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A B S T R A C T

In this work, hierarchucal porous SnO2/Zn2SnO4 nanospheres were succesfully prepared via a facile one-step
hydrothermal method with subsequent calcination process. Scanning electron microscopy (SEM), and trans-
mission electron microscopy (TEM) were employed in order to investigate the structural and morphological
properties of the as-prepared composites. The results showed that the SnO2/Zn2SnO4 composites were cpmposed
of many porous nanospheres with a uniform diameter of about 500 nm. Moreover, the as-prepared products were
used as sensing material for the fabrication of gas sensor. The sensing performance of the sensor was system-
atically evaluated, and the sensor exhibited excellent ethanol-sensing property. The optimum operating tem-
perature was 250 °C with a reponse of 30.5 toward 100 ppm ethanol. Also, the sensor showed good selectivity,
stability and a low detection limit of 0.5 ppm (response 1.4). The good sensing performance of SnO2/Zn2SnO4

nanospheres can be attibuted to the porous structure as well as the heterojunction formed between SnO2 and
ZnSn2O4.

1. Introduction

During the last decades, gas sensors based on semiconductor metal
oxides have attracted extensive attention in the application of air-
quality detection, environmental protection, inflammable gas mon-
itoring, human health, and public safety, etc [1–5]. Semiconductor
metal oxides due to their merits of easy fabrication, low cost and energy
consumption, small in size and good chemical stability have received
much scientific attention and regarded as important promising mate-
rials for gas sensors. Up to now, many semiconductor metal oxides such
as ZnO [6–8], α-Fe2O3 [9–11], In2O3 [12–14], SnO2 [15–17], WO3

[18–20] and NiO [21–23] have been successfully developed and used as
gas sensing materials, some achivements have been obtained. However,
the design and fabrication of new type sensing material for ever in-
creasing the selectivity, sensitivity and decreasing the detection limit
still remains a scientific challenge.

In the last decades, some complex oxides have attracted widely
interest with the possibility to optimize physical and chemical proper-
ties of gas sensors. Some complex oxides including ZnO/SnO2 [24–26],
ZnO/α-Fe2O3 [27,28], α-Fe2O3/NiO [29–31], In2O3/SnO2 [32,33] and
CuO/SnO2 [34–36], etc. have been already reported as gas sensing

materials. Compared with single oxides sensing materials, complex
oxides usually have higher sensitivity, better stabily and lower detec-
tion limit. However, novel sensing materials with special structure is
still needed to study in order to aquire high performance gas sensor.
Spinel oxides with a formula of AB2O4 are very promising complex
oxides for gas sensing application [37–41]. Zinc stannate (Zn2SnO4) is
an important ternary oxide with an inverse spinel structure and have a
band gap of 3.6 eV [42]. Due to its high chemical sensitivity, low visible
absorption and excellent optical electronic properties Zn2SnO4 is a
proming functional material in various advanced technologies, such as
solar cells [43–45], photocatalyst [46], lithium ion battery [47] and gas
sensors [48–50]. It is well kown that the gas sensing characteristics are
highly dependent on its morpholoy, composition and structure such as
porosity, grain size and surface area [51–53]. To date, many nanos-
tructured Zn2SnO4 with different morphologies and structures in-
cluding nanowires, nanorods, nanospheres and polyhedrons were re-
ported to detect volatile organic gases (VOCs) [49,50,54–57]. However,
as far as we know, controlled synthesis of porous SnO2/Zn2SnO4 na-
nospheres with excellent sensing properties toward ethanol has been
rarely reported.

In this work, hierachical porous SnO2/Zn2SnO4 nanospheres were
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successfully prepared via a one-step hydrothermal process. The mor-
phology, microstructure and crystallization properties were conducted
by XRD, SEM and TEM techniques. The as-prepared pruducts were
fabricated as gas sensor and the gas sensing properties were system-
atically studied. Compared with SnO2/Zn2SnO4, Zn2SnO4 and SnO2

nanoparticles the as-prepared porous SnO2/Zn2SnO4 nanospheres ex-
hibited excellent gas sensing properties toward ethanol. At the optimum
operating temperature of 250 °C, the sensor based on porous SnO2/
Zn2SnO4 nanospheres have the highest response of 30.5–100 ppm
ethanol. The gas sensing machemism was also discussed in detail.

2. Experimental

2.1. Synthesis process

All reagents used in the experiments were of analytical grade and
directly used without any further purification.

The SnO2/Zn2SnO4 composites were synthesized through a facile
hydrothermal method. In a typical procedure: 0.284 g of Na2SnO3·4H2O
and 0.02 g of trisodium citrate dihydrate (C6H5Na3O7·2H2O) were dis-
soved in 10mL of deionized water (named as solution A), and then
0.438 g of Zn (CHCOO) 2·2H2O was dissolved in a mixture of 2mL of
deionized water and 5mL of ammonia hydroxide (named as solution B).
After stirred for a while, solution A was mixed with solution B and then
stirred for another 15min at room temperature. Then the mixed solu-
tion was transffered into a 50mL of Teflon-lined autoclave and kept at
160 °C for 8 h. After the completion of reaction, the autoclave was al-
lowed to cool down to room temperature. The whilte precipitates were
collected by centrifugation, washed with deionized water and absolute
ethanol alternately for several times and dried in air at 80 °C for about
10 h. Finally, the precipitate was annealed at 800 °C for 0.5 h in air
atmosphere with a heating rate of 5 °Cmin−1, and the porous SnO2/
Zn2SnO4 composites were obtained. The synthesis process was dis-
played in Fig. 1. The synthesis procedure of SnO2/Zn2SnO4, Zn2SnO4

and SnO2 nanoparticles were described in the supporting information.

2.2. Characterization

The crystal structure of the as-prepared products was examined by
X-ray powder diffraction (XRD) on a Rigaku D/Max-2550 V dif-
fractometer using Cu-Kα radiation (λ=1.54178 Å). The morphologies
and crystal structures of the as-prepared sample were observed by field

Fig. 1. Schematic diagram of the experimental procedure.

Fig. 2. (a and b) Schematic diagram of the sensor device.

Fig. 3. XRD pattern of SnO2/Zn2SnO4 porous sphere.
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emission scanning electron microscopy (FESEM) on a JSM-7500 F
(JEOL) microscope operating at an accelerating voltage of 15 kV.
Transmission electron microscopy (TEM) and high-resolution trans-
mission electron microscopy (HRTEM) observations were carried out on
a JEM-2200FS apparatus (JEOL) operating at 200 kV. Elemental map-
ping imsges was explored by TEM attachment.

2.3. Fabrication and measurement of gas sensor

The fabrication process of the gas sensor devices could be described
as follows: first, the as-obtained products were mixed with an appro-
priate amount of deionized water to form a homogeneous slurry, and
then the slurry was coated on the surface of an alumina tube with the
help of a small brush to form a thick film. The alumina tube is 4mm in
length, 1.2 mm in external diameter, and 0.8mm in internal diameter,
the tube was attached with a pair of gold electrodes and each electrode

was connected with a pair of Pt wires. After drying in air at room
temperature, the device was then calcined at 400 °C for 2 h to enhance
the stability of the gas sensors. Afterwards, a Ni-Cr alloy coil was in-
serted into the alumina tube as a heater to control the operating tem-
perature of the sensor by adjusting the heating current. Then the device
was welded on a socket. The schematic diagram of such device was
shown in Fig. 2a and b. The gas-sensing performance of the sensor was
evaluated under laboratory conditions (30 RH%, 23 °C). The measure-
ment was processed by a static process: a given amount of the tested gas
was injected into a closed glass chamber, and the sensor was put into
the chamber for the measurement of the sensing performance. The re-
sponse of the sensor is defined as Ra/Rg, where Ra and Rg are the re-
sistance of the sensor in air and in target gas. The definition of response
and recovery times is the time taken by the sensor to achieve 90% of the
total resistance change in the case of adsorption and desorption of the
tested gases [29].

Fig. 4. (a–c) SEM and (d–f) TEM images of the as-prepared SnO2/Zn2SnO4 porous spheres.

Fig. 5. (a–c) HRTEM images of the as-prepared SnO2/Zn2SnO4 porous spheres. (d–g) TEM images of an individual microsphere and the corresponding elemental
mapping images.
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3. Results and discussion

3.1. Structural and morphological characterization

The phase compositions of the as-prepared SnO2/Zn2SnO4 samples
were identified by X-ray powder diffraction (XRD). As shown in Fig. 3,
most of the diffraction peaks can be assigned to spinel Zn2SnO4 and the
rest peaks to SnO2, which indicates that the as-prepared products was a

composite of Zn2SnO4 and SnO2. Moreover, Zn2SnO4 and SnO2 in the
composite were in good agreement with the inverse spinel Zn2SnO4

(JCPDS: 74–2184) and tetragonal SnO2 (JCPDS: 41–1445). And no
other peaks could be found in the XRD patterns of SnO2/Zn2SnO4

composite, which indicated that the SnO2/Zn2SnO4 composites were of
high purity.

Fig. 4a-c is the typical SEM morphology of the SnO2/Zn2SnO4

composites. The as-prepared composites were of well-dispersed with a
sphere-like morphology, and the diameter of the composites was about
500 nm. Moreover, from the high-magnification SEM image of Fig. 4c,
the as-obtained SnO2/Zn2SnO4 spheres were composed of many nano-
particles and forming a hierarchical structure. TEM measurement was
applied to get further information of the structure. As depict in
Fig. 4d–f, it is evident that the TEM images showed spherical mor-
phology which was in good accordance with the SEM observations. The
SnO2/Zn2SnO4 spheres were uniformly dispersed with a diameter of
about 500 nm. Furthermore, in the high-magnified TEM image of
Fig. 4f, there are bright spots existed, indicating a porous micro-struc-
ture of the as-prepared SnO2/Zn2SnO4 composites. The SEM images of
SnO2/Zn2SnO4, pure SnO2 and Zn2SnO4 nanoparticles were displayed
in Fig. S2.

HRTEM observation was further performed to confirm the mor-
phogical and crystalline structure of the SnO2/Zn2SnO4 spheres. Fig. 5a
and b displays the high-resolution TEM (HRTEM) images obtained from
the marked white rectangles in Fig. 5c. In Fig. 5a and b, the lattice
fringes could be clearly observed and the spacing of adjacent lattice
fringes were measured to be 0.260 and 0.236 nm, which were corre-
sponded to (311) and (200) lattice plane of SnO2 and Zn2SnO4, re-
spectively. In addition, TEM elemental mapping is conducted to con-
firmm the spatial distribution of Sn, Zn, and O in the spherical structure
of Fig. 5d. As shown in Fig. 5e-g, it can be found that Sn, Zn, and O were
homogeneously co-existed in the hierachical structure.

3.2. Gas sensing properties

Since operating temperature plays an important role on the semi-
conductor metal oxide based gas sensors, the respones of the sensors
based on SnO2/Zn2SnO4 porous spheres, SnO2/Zn2SnO4, Zn2SnO4 and
SnO2 nanoparticles to 100 ppm ethanol as a function of operating
temperature were measured, as displayed in Fig. 6a. As the operating
temperature changed from 150 to 350 °C, the responses first increase
and then reach the maximum value, afterwards the responses decreased
with futher increasing temperature. The optimal operating temperature

Fig. 6. (a) Response of SnO2/Zn2SnO4 porous spheres, SnO2/Zn2SnO4, Zn2SnO4

and SnO2 nanoparticles at different working temperature upon exposure to
100 ppm ethanol, (b) Response of the four sensors to various test gases with a
concentration of 100 ppm.

Fig. 7. (a) Response of the four sensors to ethanol with different concentrations at 250 °C. (b and c) Corresponding dynamic response curves of the four sensors to
different concentrations of ethanol.
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for the four gas sensors was 250 °C with responses of 30.5 (SnO2/
Zn2SnO4 porous spheres), 16.6 (SnO2/Zn2SnO4 nanoparticle), 11.7
(Zn2SnO4 nanoparticle), and 21.6 (SnO2 nanoparticle), respectively.
Obviously, the sensor based on SnO2/Zn2SnO4 porous spheres exhibited
the highest gas response toward ethanol, and then SnO2 nanoparticles.
It is worth noting that after grinded the SnO2/Zn2SnO4 nanoparticles
exhibited only half of the response value as compared to SnO2/Zn2SnO4

porous spheres.
Selectivity is an important parameter of gas sensors, the selectivity

of the sensor based on SnO2/Zn2SnO4 porous spheres, SnO2/Zn2SnO4,
Zn2SnO4 and SnO2 nanoparticles were investigated as shown in Fig. 6b.
The bar graph of the four sensors toward various kinds of volatile or-
ganic gases, including ethanol, acetone, methanol, formaldehyde, to-
luene and xylene with a concentration of 100 ppm at their optimum
operating temperature of 250 °C was listed. Clearly, it can be seen that
all of the four sensors displayed the highest gas response toward
ethanol, and a relatively lower response to the other tested gases. In

addition, it is worth noting that for the sensor based on SnO2/Zn2SnO4

porous spheres, the gas response to ethanol, acetone, methanol, for-
maldehyde, toluene and xylene was 30.5, 12.1, 14.9, 11.2, 3.8, and 3.9,
respectively. The gas respponse value toward ethanol was 2–8 times
higher than to other tested gases, which indicated that the sensor based
on porous SnO2/Zn2SnO4 spheres possesses a high response and good
selectivity to ethanol.

Fig. 7a–c is the sensing beaviour of the four sensors when orderly
exposed to different concentrations of ethanol at 250 °C. Fig. 7a is the
linear curve of the four sensors with the increasing of ethanol con-
centration, obviously, the four sensors showed nearly a linear in-
creasing with ethanol concentration varied from 0.5 to 5 ppm and 10 to
100 ppm. Fig. 7b and c is the corresponding dynamic response and
recovery curves with the ethanol concentration increased from 0.5 to
5 ppm and 10 to 100 ppm. It can be seen that the four senors exhibited a
stepwise increase, and the highest response can be observed from the
sensor based on porous SnO2/Zn2SnO4 sphere. The corresponding re-
sponse values were 1.4, 1.7, 2.2, 2.5, 2.7, and 3.0 (Fig.7b) for the
ethanol concentration from 0.5 to 5 ppm, and for the concentration
from 10 to 100 ppm the response values were 9.9, 11.6, 15.4, 20.6,
23.2, and 30.5 (Fig. 7c). Moreover, the sensor based on porous SnO2/
Zn2SnO4 sphere have a low detection limit of 0.5 ppm, which indicates
the high sensing property of the sensor. Furthermore, in order to con-
firm the good sensing characteristic of porous SnO2/Zn2SnO4 spheres
based gas sensor, a comparison between porous SnO2/Zn2SnO4 spheres
and other similar ethanol sensing material in reported literatures was
summarized in Table. 1 [49,58–62]. The results indicate that the
ethanol response value of sensor based on porous SnO2/Zn2SnO4

spheres exhibited a relatively higher response and lower working
temperature.

Response and recovery characteristic is another parameter of gas

Table 1
Comparison of ethanol sensing performance of gas sensors based on other
material in previous reports.

Sensing material Morphology Ethanol Con.
(ppm)

Tem. (oC) Res.
(Ra/Rg)

Ref.

Zn2SnO4/SnO2 Octahedral-like 100 200 14 [48]
Zn2SnO4 Flower-like 100 380 30.8 [57]
Zn2SnO4 Nanowires 50 500 21.6 [58]
SnO2-ZnO Nanostructures 100 400 16 [59]
SnO2 Nanorods 50 300 12.4 [60]
SnO2 Hollow sphere 500 350 23.5 [61]
SnO2/Zn2SnO4 Porous spheres 100 250 30.5 This

work

Fig. 8. (a–f) Response transient of the porous SnO2/Zn2SnO4 spheres to 100 ppm ethanol at different working temperature. (g) Response and recovery times of the
sensor based on SnO2/Zn2SnO4 spheres at different operating temperature.
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sensor. The response and recovery properties of the sensor based on
porous SnO2/Zn2SnO4 spheres toward 100 ppm ethanol at different
operating temperature were investigated as displayed in Fig. 8a–f. It
can be seen that the resistance of the sensor was distinctly decreased
with the operating temperature increased from 200 to 325 °C, in addi-
tion, the response and recovery time was also varied at different tem-
perature. At the optimum operating temperature of 250 °C, the re-
sponsed time was 2 s, and the recovery time was 114 s, respectively.

Fig. 7g is the response and recovery time at different operating tem-
perature, the response and recovery time was greatly decreased with
increasing operating temperature, and the sensor exhibited a good re-
sponse and recovery characteristic at the optimal temperature of
250 °C.

As far as we know the reversibility and long-term stability are also
important parameters to evaluate gas sensors. Fig. 9a illustrates 6 cycles
of response and recovery curve of porous SnO2/Zn2SnO4 sensor to
100 ppm ethanol at 250 °C. The response and recovery curve could be
well repeated with similar shape of dynamic transients, demonstrating
a good reversibility of the sensor. To further investigate the long-time
stability of porous SnO2/Zn2SnO4 based sensor, the response and the
resistance in air of the sensor to 100 ppm ethanol at 250 °C during 20
days was measured. As depicted in Fig. 9 b, there is no obvious fluc-
tuation in the resistance and response values during the test days, il-
lustrating good long-term stability of the sensor.

3.3. Gas sensing mechanism

For n-type semiconductor metal oxide based gas sensors, the most
widely accepted gas sensing machenism is based on the resistance
change in the process of adsorption and desorption of gas molecules and
chemical reactions on the surface of sensing materials [53,63,64]. As
illustrated in Fig. 10, when the sensor is exposed in ambient air, oxygen
molecules will adsorb on the surface of porous SnO2/Zn2SnO4 spheres
and ionize to negatively charged surface-adsorbed oxygen species by
capturing free electrons from the conducting band of SnO2/Zn2SnO4

composites, as shown in Eqs. (1)—(3):

O2(gas)→ O2 (ads) (1)

O2(ads) + e− → O2-
(ads) (2)

O2−
(ads) + e− → 2O−

(ads) (3)

As a result, a thick electron depletion layer will form on the sueface
of SnO2/Zn2SnO4 spheres, and a high potential barrier is formed be-
tween the adjacent nanograins, leading to an increase of resistance in
the sensing material. When the sensor is exposed to reducing gas such
as ethanol at a moderate temperature, the ethanol molecules would
react with the surface adsorbed oxygen species and the captured elec-
trons will release back to the conduction band, resulting in an in-
creasing conductivity and a deceasing resisitance of the sensor. The
reaction process between surface adsorbed oxygen species and ethanol
is described as Eq. (4):

C2H5OH+ 6O−→2CO2 + 3H2O +6e- (4)

The excellent gas sensing properties of porous SnO2/Zn2SnO4

spheres are mainly attributed to the porous hierarchical structure and
the heterojunctions formed between SnO2 and Zn2SnO4. Firstly, com-
pared with SnO2/Zn2SnO4, Zn2SnO4 and SnO2 nanoparticles, the hier-
archical SnO2/Zn2SnO4 spheres with porous microstructure could pro-
vide a higher accessible surface (as shown in Fig. S3 and Table. S1), and
beneficial to gas diffusion and adsorption. Therefore, more surface ac-
tive sites are available for the reaction between adsorbed oxygen and
tested gases, leading to an increasing utilization of the sensing body.
While for SnO2/Zn2SnO4 nanoparticles the porous hierarchical archi-
tecture was destroyed, the oxygen and target gas could only adsorb on
the surface of the material, resulting in a low utilization of the sensing
body and a relatively low gas response. Another reason is the hetero-
junction formed between Zn2SnO4 and SnO2. Accoding to the literature,
heterojunctions formed between different semiconductor oxides could
make a significant contribution to the gas sensing performance
[50,65,66]. Due to the different band gap energy and work function of
Zn2SnO4 and SnO2, electrons will be transffered between the two
semiconductor oxides, forming heterojunctions at the SnO2/Zn2SnO4

interfaces. As the conduction band edge of Zn2SnO4 locates at higher

Fig. 9. (a) Six cycles of dynamic response curves of porous SnO2/Zn2SnO4

spheres to 100 ppm ethanol at 250 °C. (b) Resistance in air and responses to
100 ppm ethanol of SnO2/Zn2SnO4 spheres as a function of the test days at
250 °C.

Fig. 10. The schematic illustration of ethanol gas sensing mechanism of porous
SnO2/Zn2SnO4 spheres.
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potential than SnO2, the electrons in the conduction band of Zn2SnO4

would migrate to the conduction band of SnO2 until their Femi level
become euqal [67,68]. This process will result in the generation of
additional electron depletion in the interface of SnO2/Zn2SnO4 com-
posites, which will play an important role in the sensing reactions, and
resulting in an enhanced sensing performance.

4. Conclusions

In summary, we have successfully prepared hierarchical porous
SnO2/ Zn2SnO4 spheres via a one-step hydrothermal method with
subsequent calcination treatment. The results indicated that the SnO2/
Zn2SnO4 spheres were composed of many SnO2/ Zn2SnO4 nanoparticles
forming a hierarchical porous micro-structure. The SnO2/ Zn2SnO4

composites were used as gas sensing material and the gas sensing per-
formances of the as-fabricated gas sensor were systematically in-
vestigated. The results indicated that compared with SnO2/ Zn2SnO4,
Zn2SnO4 and SnO2 nanoparticles the sensor based on porous SnO2/
Zn2SnO4 composites displayed excellent gas sensing properties toward
ethanol, including high gas response, good reversibility and out-
standing selectivity. Moreover, the sensor showed a low detection limit
of 0.5 ppm with a response value of 1.4. The good sensing performance
can be mainly attributed to the unique porous structure and hetero-
junction formed between SnO2 and Zn2SnO4. This work indicates that
porous SnO2/Zn2SnO4 composites are very promising sensing material
for the application of ethanol gas sensor.
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