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A B S T R A C T

The undoped and 1.0–5.0 mol% La–doped In2O3 hollow microspheres have been successfully synthesized via a
simple hydrothermal method without template and gas sensor have been fabricated basing on them. The na-
nostructures and morphologies of the maintained hollow spheres were characterized by various experimental
techniques. The gas sensing properties of these hollow microspheres were investigated systematically. The re-
sults indicated that among all the samples (pure, 1.0, 3.0 and 5.0 mol% La–doped In2O3), 3.0 mol% La–doped
In2O3 exhibited the highest response toward 10 ppm hydrogen sulfide (H2S) at 200 °C, having a response value of
17.8, approximately 4.8 times higher than pure In2O3. Furthermore, excellent selectivity, good repeatability and
outstanding long-term stability were also achieved. The significantly enhanced sensing properties to H2S could
be attributed to the changes in distribution of different oxygen components, crystallite size and specific surface
area caused by La doping.

1. Introduction

In recent years, the monitoring of toxic gases is becoming more and
more important to humans safety and environment protection.
Hydrogen sulfide (H2S) is a colorless, flammable acid gas with a stench
of rotten eggs at low concentrations, while at high concentrations, it
could paralyze the human olfactory nerve, causing it is odorless.
Hydrogen sulfide is a highly toxic substance, even small amounts of
high-concentration sulfide can be fatal to human in a short period of
time [1–6]. Low concentrations of hydrogen sulfide also have an ad-
verse impact on human eyes, respiratory and central nervous. Up to
now, several methods have been used for the detection of H2S, in-
cluding solid electrolytes [7,8], organic films [9,10] and metal oxide
semiconductors [11,12]. Among them, metal oxide semiconductor
sensors are widely researched because of their marked advantages of
low cost, high sensitivity, fast response and simple manufacturing.
However, some disadvantages still exist to putting the sensors into
practical application eventually. Especially, it is uneasy for the re-
sistances of sensors to recover to their initial values when H2S gas is
removed during the process of gas testing [13]. Thus, it needs to be
tested under high temperature to restore its resistance owing to the fast
desorption for H2S gas.

In the past few decades, researchers have widely investigated var-
ious oxide semiconductors to detect H2S gas, including CuO [14,15],
SnO2 [16,17], α-Fe2O3 [18,19], WO3 [20,21], In2O3 [22,23] and so on.
Indium (III) oxide (In2O3), as an n-type direct band semiconductor
(Eg=2.8 eV), has been recognized as a suitable gas sensing material
due to its high conductivity and abundant defects on the sensing sur-
face. These properties made In2O3 become a promising sensing material
for H2S gas sensor. As is known to all, the properties of the nanoma-
terial are strongly dependent on its morphology, various methods have
been used to synthesize In2O3 nanostructures with different dimen-
sionals and morphologies, such as nanoparticals [24,25], nanowires
[26,27], nanorods [28,29], nanosheets [30,31] and nanospheres
[32,33]. Among them, hollow microspheres synthesized by one step
hydrothermal method have been demonstrated to have great potential
in the application of gas sensor owing to their high specific surface area
and high gas accessibility [34,35].

Furthermore, it is well known that the principle of the resistance gas
sensor was based on the change of charge carrier caused by surface gas-
solid interaction. In view of this, the modulation of charge carrier
concentration by doping should be an effective way to improve the H2S
gas sensitivity [36]. For example, Hu et al. reported Pd-doped CuO with
nanoflower structure could have higher sensitivity than the undoped
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one to 50 ppm H2S at 80 °C [37]. Cu-doped SnO2 nanospheres were
studied by Shu et al. and the sensitivity increases 7 times for the de-
tection of 50-ppm of H2S at room temperature [38]. Sukunta et al.
demonstrated that 0.1%wt V-doped SnO2 films could exhibited a very
high response with a short response time of 2.0 s to 10 ppm of H2S at
350 °C [39]. These results showed that doping is a promising method to
modify In2O3 nanomaterial for enhancing its gas sensing performance.
Lanthanum oxide (La2O3) have been known as catalysts in many fields.
As for gas sensor, La2O3 doping has been used to improve both se-
lectivity and sensitivity of the sensing materials to several gases, such as
acetone, H2S and so on [40–43]. However, as far as we know, the H2S
sensing properties of La–doped In2O3 hollow spheres have been barely
investigated.

In this work, a simple hydrothermal method was adopted to syn-
thesize the undoped and La–doped In2O3 hollow microspheres with
great specific area. Meanwhile, several kinds of characterizations were
carried out to obtain the crystal structural and morphological in-
formation. In addition, the gas sensing properties of synthesized simples
were also been examined. According to the results, the sensor with
3.0 mol% La–doped In2O3 hollow microspheres exhibited the highest
response toward 10 ppm H2S at 200 °C, having a response value of 17.8,
which was about 4.8 times higher than pure In2O3. Notablely, there was
a clear improvement of response velocity between the 3.0mol%
La–doped and pure In2O3 with the response times of 43 s and 178 s,
respectively. Besides, excellent selectivity, good repeatability and out-
standing long-term stability were also achieved. In the end, the related
mechanisms of gas sensing were investigated and discussed.

2. Experimental

2.1. Preparation of pure and La–doped In2O3 hollow microspheres

All of the chemical reagents involved in the experiment were ana-
lytical grade used as received without further purification. Purchased
from Sinopharm Chemical Reagent Co. Ltd. In(NO3)3·4.5H2O and La
(NO3)3·nH2O were used as Indium and Lanthanum sources, respec-
tively.

The pure and La–doped In2O3 hollow microspheres with various
doping concentrations of 1.0, 3.0 and 5.0 mol% (labeled as S1, S2, S3
and S4, respectively) were synthesized by hydrothermal. In a typical
experiment process, 0.26 g (0.68 mmol) of In(NO3)3·4.5H2O, a certain
amount of La(NO3)3·nH2O (in a ratio of 1.0,3.0 and 5.0 mol% respec-
tively), 0.50 g of urea were added to the solution of 32mL absolute
alcohol and 3mL polyethylene glycol (the molecular weight is 400)
under vigorous magnetically stirring for 90min. Then, the homo-
geneous and transparent solution was transferred into a Teflon-lined
stainless-steel autoclave, tightly sealed and maintained at 160 °C for
12 h at the oven. After being cooled to room temperature naturally, the
white precipitates were collected and washed by centrifugation with
distilled water and absolute alcohol for several times. The final light
yellow products were obtained after sintering the white powders at
500 °C for 2 h in air.

2.2. Characterization

The X-ray diffraction (XRD) patterns were recorded by Rigaku
TTRIII X-ray diffractometer with Cu K radiation at a wavelength of
1.5406 Å at 40 kV and 200mA. The field emission scanning electron
microscopy (FESEM) images were collected by a JEOL JSM-7500F mi-
croscope at an acceleration voltage of 15 kV. The energy dispersive X-
ray spectroscopic (EDS) elemental mapping was investigated by the
TEM attachment. The transmission electron microscopic (TEM) and
high resolution transmission electron microscopic (HRTEM) images,
and selected area electron diffractive (SAED) patterns were obtained on
a JEOL JEM-2200FS transmission electron microscope at an operating
voltage of 200 kV. The X-ray photoelectron spectroscopy (XPS) analysis

was conducted on an ESCALABMKII X-ray photoelectron spectrometer
with Mg-K 1253.6 eV) achromatic X-ray source. The specific surface
area was estimated from the Brunauer–Emmett–Teller (BET) measure-
ments by using a Micromeritics Gemini VII apparatus (Surface Area and
Porosity System).

2.3. Fabrication and measurement of gas sensor

The schematic structure of the fabricated gas sensor was shown in
Fig. 1. Its fabrication process was as follows: The products were mixed
with deionized water at a weight ratio of 5:1 to form a paste, and then
coated it on the outside of an alumina tube (4mm in length, 1.2mm in
external diameter, and 0.8 mm in internal diameter, attached with a
pair of gold electrodes and each electrode was connected with a Pt
wire) by a small brush to form a thick film [44]. Subsequently, the
device was calcined at 500 °C for 2 h. It was aged for 7 days in order to
enhance the stability of the gas sensors. To control the working tem-
perature of the sensor, a Ni–Cr alloy coil was inserted as a heater into an
aluminum oxide tube by adjusting the heating. The gas sensing prop-
erties of the sensors were measured by a static test system. During the
testing, a given amount of target gases mixed with dry air were injected
into an airtight chamber to obtain its desired concentrations. For an
oxidizing gas, the response of the sensor is defined as S=Rg/Ra. For a
reducing gas, the response was defined as S=Ra/Rg. Ra and Rg are the
resistances of the sensor in air and target gas, respectively. The response
and recovery times are defined as the time taken by the sensor to
achieve 90% of the total resistance change in the case of adsorption and
desorption, respectively.

3. Results and discussion

3.1. Structural and morphological characteristics

The X-ray diffractometry (XRD) analysis was performed to in-
vestigate the crystal structures and the effect of La3+ doping on the
phase structures. The XRD patterns of pristine In2O3 and La–doped
In2O3 hollow spheres are shown in Fig. 2a. All of the diffraction peaks
could be indexed to cubic ferromanganese structure of In2O3, which
were agreed well with the standard card from the Joint Committee on
Powder Diffraction Standards card (JCPDS 71–2194). No other peak
corresponding to lanthanum and lanthanum compound was observed in
the XRD patterns of the doped nanomaterials, indicating that no im-
purity phase was formed. In addition, it was shown that the diffraction
peaks became broader with the increased concentration of La dopant.
According to Scherrer formula, the average crystallite sizes of S1, S2,
S3, S4 were about 16.28, 11.31, 9.36, and 8.57 nm, respectively, which
indicated that the addition of La could effectively prevent In2O3 crys-
tallites from further growing up. To further evaluate the effect of La on
the phase structures, the (222) and (400) diffraction peaks of these as-
obtained simples were magnified and their comparison are showed in
Fig. 2b. The high shifts (0.08°) of the peaks of the S3 to smaller 2θ

Fig. 1. Schematic diagram of the gas sensor.
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values were obviously observed compared with that of S1 sample. This
could be ascribed to the difference between the radii of La3+ and In3+.
The radius of La3+ was 1.06 Å, which was larger than that of In3+

(0.81 Å) at the same coordination number. Thus, the diffraction peaks
would shift to the left with increasing the La3+ addition amount. These
results demonstrated the successful incorporation of lanthanum into
In2O3 crystal lattice.

The morphological characteristics of the as-synthesized original and
doped In2O3 with different La doping amount were observed by FESEM.
The low-magnitude FESEM images were displayed in Fig. 3a–d, from
which the uniform size spherical architecture and good dispersibility
could be shown in Fig. 3a, whereas in Fig. 3b–d more uneven ag-
gregates were observed with the increasing of La3+ addition amount.
From the respective cracked In2O3 spherical architecture in the inset of
Fig. 3a–d, the hollow structure of the obtained In2O3 could be verified.
The observed single hollow spheres consist of many small nano-
particles. Meanwhile, the shell of In2O3 spherical architecture around
400 nm in thickness and the sizes of the S1, S2, S3, S4 were about
2.4 μm, 2.2 μm, 2.1 μm and 2.0 μm, respectively. It also could be ex-
hibited that the grain boundary became more and more indistinct and
the hollow spheres became more compact, which probably resulted
from suppressed grain boundary migration and the increased energy
barrier for grain growth.

In order to further study the lattice structure and more detailed
structural features of La–doped In2O3 hollow microspheres, the trans-
mission electron microscopy (TEM) images of S3 were displayed in
Fig. 4. As seen in Fig. 4a, the synthesized samples exhibited homo-
geneous size and morphology. And the hollow structure of these mi-
crospheres could be shown clearly in Fig. 4b. In the high-magnification

TEM images (HMTEM; Fig. 4c), the lattice plane could be obviously
observed with the value of 0.357 nm, corresponding to the (220) plane
of In2O3. The inset of Fig. 4c is the selected area electron diffraction
pattern, in which a series of diffraction rings can be observed. It shows
that the sample S3 is polycrystalline in nature. The energy dispersive X-
ray spectroscopic (EDS) elemental mapping images (Fig. 4d–g) confirms
the composition of the product and the spatial distribution of the ele-
ments. Obviously, In and O signals were detected as a hollow spherical
structure, while La signals were detected in the whole hollow spherical
region, which indicated the uniform distributions of La element over
the whole sample S3.

3.2. Gas-sensing properties

In order to illuminate whether doping of La into In2O3 micro-
structures was an effective way to improve the device performance of
the In2O3-based gas sensor, the gas sensing characteristics of the sensors
based on all the samples were evaluated. It was well known that the
operating temperature and the amount of dopant have great influence
on the gas sensing properties of gas sensor. Fig. 5a showed the re-
sponses of the gas sensors based on the S1, S2, S3 and S4 to 10 ppm H2S
measured at different operating temperature from 175 to 300 °C aiming
to determine the optimum operating temperature and the optimum
doping amount. It is obvious that the response of all sensors rise with
increasing the operating temperature until the value reached its max-
imum at an optimum operating temperature and then decreased with
further increasing the operating temperature. The optimal operating
temperature of every sample was 200 °C. Meanwhile, the gas response
was greatly improved because of La doping. The gas responses of the
sensors based on the S1, S2, S3 and S4 to 10 ppm H2S at 200 °C were
3.7, 7.49, 17.8, and 10.7, respectively. Thus, 3.0mol% La–doped In2O3

exhibited the highest response to 10 ppm H2S, about 4.8 times higher
than that of the original In2O3.

H2S concentrations dependence of dynamic responses for the S1 and
S3 at optimal operation temperature of 200 °C were revealed in Fig. 5b.
The results indicated that the gas responses of these two sensors both
increased as the H2S concentration increased from 1 ppm to 200 ppm
and the response enhanced significantly at the above detecting con-
centration of H2S after the La–doped In2O3 hollow spheres. The re-
sponses of sensor based on S1 was 1.2, 1.8, 3.5, 8.3, 21.3, 32.2, 42.2 to
1, 5, 10, 20, 50, 100, 200 ppm H2S, while the responses of sensor based
on S3 were 2.48, 6.32, 18.2, 38.1, 50.3, 87.9, 111.9 to 1, 5, 10, 20, 50,
100, 200 ppm H2S, respectively. Moreover, as shown in the inset of
Fig. 5b, we could find that, compared with S1, the response of the
sensor based on the S3 did not tend to saturation when the hydrogen
sulfide concentration raised to 200 ppm, although the increasing trend
slowed down with the increase of the hydrogen sulfide concentration.
This indicated that the 3.0mol% La–doped In2O3 hollow microspheres
based gas sensor had a broad test range.

In terms of semiconductor gas sensors, selectivity was another im-
portant parameter. Fig. 6 revealed the selectivity of S1 and S3. The
testing gases included H2S, ethanol, acetone, formaldehyde, xylene,
methanol and toluene. The testing conditions are 200 °C and 50 ppm.
Obviously, the sensor based on S3 showed enhanced responses to all
target gases in compare with S1, Particularly, its response to H2S was
50.3, higher than other testing gases. The corresponding responses of S3
was 6.28, 5.75, 3.65, 2.23, 1.71 and 1.44 to ethanol, acetone, for-
maldehyde, xylene, methanol and toluene, respectively. Thus, we could
say that S3 have an excellent selectivity toward H2S over the other
gases at 200 °C.

The response and recovery properties were additional major para-
meters for gas sensors. It was universally acknowledged that the re-
covery time is very long for hydrogen sulfide gas. The Fig. 7a showed
the dynamic response and recover characteristics of sensors based on
the S1 and S3 to 10 ppm H2S at 200 °C. It could be seen that the re-
sistance of the sensor changed immediately when H2S was injected and

Fig. 2. (a) XRD patterns of La–doped In2O3 hollow microspheres with different
molar ratios, (b) Comparison of (222) and (400) peaks from XRD patterns.
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then reached a steady state quickly, the response time based on S3 and
S1 were about 43 s and 178 s, respectively. It indicated that S3 had a
great promotion on response time, which might result from the larger
surface area of the hollow spheres provided sufficient active sites.
However, when the sensors are put into air again, S3 and S1 would take
a long time to return initial resistance value, which might caused by the
difficult desorption of hydrogen sulfide gas in air. The four re-
presentative reversible cycles (shown in Fig. 7b) of H2S response curve
were carried out for S3. There was no clear floating in responses during
the periods of cycle measurement to 10 ppm H2S at 200 °C, which in-
dicated its excellent repeatability and stability. Fig. 8 displayed the long
term stability of the gas sensor S3 to 10 ppm H2S at 200 °C for 30 days.
The data was measured every three days. Notably, the response values
just fluctuated 5% around 17.8, proving a relatively good stability of
S3. According to the above measurement results, the excellent gas
sensing characteristic for S3 might make it particularly attractive as a
promising practical sensor.

3.3. Mechanism of the enhanced gas sensing performance

To date, the most widely accepted theory about semiconductor gas
sensor is based on the change in the electrical conductivity caused by
the interactions between the surface chemisorbed oxygen species and
target gases [45]. Indium oxide is a typical n-type metal oxide semi-
conductor. When the In2O3 hollow microspheres were exposed to air,
the oxygen molecules can be chemisorbed on the surface and captured
electrons from the conduction band of In2O3 to form surface adsorbed
oxygen species, such as O2

−, O−, and O2− ions. Thus, an electron de-
pletion layer on the surface of the In2O3 hollow microspheres was
formed, giving rise to a high surface resistance via the loss of free
electrons. When In2O3 hollow microspheres were exposed to H2S, the
following reactions will occur:

+ → + +
− −eH S 3O H O SO 62

2
2 2 (1)

Fig. 3. FESEM images of (a) S1, (b) S2, (c) S3, (d) S4, the insets are high-magification images.

Fig. 4. (a)–(b) is TEM images patterns of S3. (c) is the HRTEM images of selected areas. The insets are selected area election diffraction (SAED) patterns. (d)–(g) are
EDS elemental maps.
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+ → + +
− −eH S 3O H O SO 32 2 2 (2)

The reactions will bring about releasing the electrons trapped in the
ionized oxygen species back into the conduction band of In2O3, re-
sulting in the decrease in the sensor resistance.

The enhancement of the gas response of the sensor base on the
La–doped In2O3 hollow microspheres are likely to be attribute to the
changes in distribution of different oxygen components, crystallite size
and specific surface area. XPS analysis was performed at Fig. 9 in order
to further explore the possible mechanism. Fig. 9a–d shows the high
resolution scans of In 3d, La 3d, and O 1s, respectively. The In 3d
spectrum (shown in Fig. 9a) has two strong peaks at binding energy of

444.50 and 452.18 eV. They can be respectively indexed to the char-
acteristic spin-orbit split states of In 3d5/2 and In 3d3/2, indicating a In
oxidation state of +3. The XPS spectrum of La 3d electrons (displayed
in Fig. 9b) could be divided into several Gaussian peaks. In this figure,
the peaks at 835.20 eV and 838.86 eV were attributed to La3d5/2,
852.46 eV and 855.84 eV are attributed to La3d3/2. This further con-
firms the existence of La3+ ions in the sample. The O 1s peak was ex-
hibited in Fig. 9c and d, in which it could be decomposed into three
Gaussian peaks, indicating that there are significant differences be-
tween oxygen states on the surface of the samples. These three peaks
were expressed as OL, OV, OC, respectively. The OL component was
attributed to the lattice oxygen species, OV component is associated
with oxygen vacancy and the OC is ascribed to chemisorbed oxygen in
the surface of In2O3. They were located at 529.94 ± 0.4 eV (OL),
530.60 ± 0.6 eV (OV) and 531.94 ± 0.2 eV (OC), respectively. The
relative percentages of OL, OV, and OC components were approximately
45.8%, 27.3% and 26.8% in S1, while they were 27.9%, 36.2% and
35.9% in S3. Obviously, with the increase of La doping concentration,
the contents of OV and OC increase greatly. It had reported that gas
sensitivity was closely related to the oxygen vacancy and chemisorbed
oxygen on the surface of sensing material [46,47]. The augmentation of
the OV component could provide more active sites on the sensing ma-
terial surface for gas adsorption reactions. The increase of OC compo-
nent means that more surface chemisorbed oxygen could participates in
the redox reaction on the surface of In2O3 nanomaterials, which leads to
larger change of the conductivity of the sensing material. The results
also revealed that the La–doped In2O3 materials had the higher ability
for adsorbing the ionized oxygen species. Therefore, the extraordinary
ability of chemisorbing oxygen greatly contributes to the high-perfor-
mance gas sensing toward H2S gas.

Fig. 5. (a) Response of sensors bases on S1, S2, S3 and S4 to 10 ppm H2S as
function of the operating temperature. (b) Response of sensors bases on S1 and
S3 toward H2S at different concentrations.

Fig. 6. Responses of the sensor based on S1 and S3 to 50 ppm various different
gases at an operating temperature of 200 °C.

Fig. 7. (a) Dynamic response-recovery curve of S1 and S3 (a) four reversible
cycles of S3 (b) to 10 ppm H2S at 200 °C.
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As we know, average crystallite sizes and specific surface areas
might be also the key factors for the enhanced gas response [48]. To
evaluate the specific surface areas of the samples, N2 adsorption-deso-
rption isotherms (shown in Fig. 10) are measured. The inset of Fig. 10
indicated that the nanoparticle pore sizes are around 10 nm, proving
S1, S2, S3 and S4 were mesoporous materials. Nanoparticles were as-
sembled into to a hollow sphere and pores are left between neighboring
particles. The estimated specific surface areas of the S1, S2, S3 and S4
are about 33.73, 51.17, 55.95 and 39.71 m2 g−1, respectively. Ob-
viously, when the concentration of La dopant is not too high, with the
increasing of La doping concentration from S1 to S3, the specific surface
area increases greatly. This means that the surface activity of the sen-
sing material could be increased significantly, so that more oxygen can
be absorbed and ionized owing to La doping. Meanwhile, the diffusion
of the target gas and oxygen into the gas sensor body and the reaction
between the target gas molecule and the chemisorbed oxygen ion also
become easy. Therefore, the response to H2S could increase with the

increased specific surface area and S3 has the high sensitivity. However,
for S4 with largest amount of La3+ content, its specific surface area and
sensitivity were both decreased. Accordingly, the conclusion is that the
larger specific surface area, the higher response was made. It is known
that crystallite sizes also have an effect on the sensitivity. To clarify the
relationship between crystallite sizes and specific surface area, their
data are compared in Table 1. It could be seen that La doping leads to a
decrease in the average grain size. As suggested by Noboru Yamazoe’s
work [49]. When the grain size was below or equal to twice of the
Debye length, the response is inversely proportional to the size of the
grain, that is to say, the smaller the size is, the more favorable it is to get
a high response. This conclusion is consistent with the result of specific
surface area. However, with the further decrease of crystallite size, the
nanoparticles are apt to agglomerate forming a relatively dense sphe-
rical shell structure of In2O3 hollow spheres. In this way, the specific
surface area decreased. Thus, the enhanced gas response might be
partly explained by the decrease in crystallite size and the increase in
specific surface area.

4. Conclusion

In summary, we successfully synthesized the pure and La–doped
In2O3 hollow microspheres by one-step facile hydrothermal route. The
results of a systematic and comparative gas sensing measurement in-
dicated that the sensor based on the 3.0 mol% La–doped In2O3 has the
significantly enhanced gas response to H2S compared with the un-
doped, 1.0mol%, and 5.0mol% La–doped In2O3. Moreover, it has an
excellent selectivity, good repeatability and outstanding long-term
stability. The changes in distribution of different oxygen components,
crystallite size and specific surface area caused by La doping could be
responsible for the improvement of sensing properties. Hence, we could
confirm that the La–doped In2O3 hollow microspheres is a promising
strategy for designing and fabricating high performance H2S sensor.

Fig. 8. The long-term stability of S3 to 10 ppm H2S at 200 °C.

Fig. 9. XPS spectra of S1 and S3. (a) In 3d spectrum of S3, (b) La 3d spectrum of S3, (c) O 1s spectrum of S1, (c) O 1s spectrum of S3.
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Table 1
Comparison of the average crystallite sizes and specific surface areas of the S1,
S2, S3 and S4.
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Average crystallite size (nm) 16.28 11.31 9.36 8.57
Specific surface area (m2 g−1) 33.73 51.17 55.95 39.71
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