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A B S T R A C T

In this work, a novel branched heterostructural composite composed of nanorods ZnO backbone and SnO2

branches was prepared via a facile one-step hydrothermal method. The morphology, structure and component of
the SnO2/ZnO composite was characterized by field emission scanning electron microscopy (FESEM), trans-
mission electron microscopy (TEM), X-ray powder diffraction (XRD), and elemental mapping analysis. The
evolution process of the SnO2/ZnO composite was observed by SEM that the SnO2 branches gradually grow on
ZnO backbones. The composite with novel heterostructure was applied as the sensing material for the fabrication
of gas sensor, and their gas sensing properties were tested for response to various gases. Compared to pure ZnO
gas sensors the branched SnO2/ZnO gas sensor exhibited enhanced gas sensing properties toward ethanol, giving
a response of 18.1–100 ppm.

1. Introduction

Metal oxide semiconductor gas sensors have been investigated ex-
tensively in recent years and used as a dominant and effective approach
in the environment monitoring, air quality control, detection of in-
flammable, explosive, or toxic gases [1–4]. Thus, in recent years, a
variety of semiconducting metal oxides such as SnO2 [5,6], ZnO [7–9],
WO3 [10,11], In2O3 [12–14] and NiO [15–17] with various morphol-
ogies and microstructures have been investigated intensively for gas
sensor applications to detect different test gases, including reducing
gases and oxidizing gases [18–22]. Despite of exciting results have been
obtained, the development of more highly sensitive and markedly se-
lective gas sensors based on metal oxide semiconductors with novel
nanostructures still remains a challenge. It has been demonstrated that
the sensing properties of the semiconducting metal oxides are closely
related to their composition, morphology, and crystalline size. So many
approaches have been used to improve the sensitivity and selectivity of
these oxides, including the loading of noble metal catalysts [23,24], the
doping of transition metal ions [25,26], developing binary or ternary
metal oxides [27]. Recently, many studies have confirmed that sensing
materials constructing of two or more metal oxides show better sensing
properties than that of a single metal oxide [28,29]. Therefore, many
hybrid material such as α-Fe2O3/SnO2 [30,31], SnO2/ZnO [32–34], α-

Fe2O3/ZnO [35,36], CeO2/ZnO [37,38] and In2O3/ZnO [39,40] with
different morphologies and structures have been investigated for gas
sensing, and have achieved enhanced sensing property.

As important functional materials, ZnO and SnO2 with band gaps of
∼3.4 eV and ∼3.6 eV, respectively, have been intensively investigated
due to their unique properties and great potential applications such as
gas sensors [41–43], solar cells [44,45], photocatalytic degradation
[46,47] and lithium batteries [48,49]. Recently, many studies have
demonstrated that the performance of ZnO or SnO2 in gas sensing,
photocatalytic degradation and lithium ion batteries can be sig-
nificantly improved by formation of SnO2/ZnO composites. Therefore,
various SnO2/ZnO composites with hierarchical microstructures have
been prepared using different methods. However, to the best of our
knowledge, studies of SnO2/ZnO heterostructures obtained by a simple
one-step hydrothermal route have been rarely reported.

In this work, SnO2/ZnO heterostructures were successfully synthe-
sized through a facile one-step hydrothermal method. The diameter of
the as prepared ZnO backbone and SnO2 branches were about 100 and
10 nm, respectively. The products were applied to fabricate gas sensing
devices, and their gas sensing characteristics were systematically in-
vestigated. The results showed that, the SnO2/ZnO heterostructures
exhibited enhanced gas sensing properties toward ethanol compared
with pure ZnO nanorods. The enhancement in sensing properties maybe
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attributed to the novel structure and the formation of SnO2/ZnO het-
erojunction.

2. Experimental

2.1. Synthesis of SnO2/ZnO composites

All of the reagents in the experiment were of analytical grade and
used as received without further purification. The composites were
prepared via a hydrothermal method. In a typical experiment, 1 mmol
of zinc sulfate heptahydrate (ZnSO4·7H2O) and 0.5mmol of tin chloride
pentahydrate (SnCl4·5H2O) were dissolved in 40mL of deionized water,
after magnetic stirring for about 20min, 15mmol of NaOH were added
into the above mixed solution and continued stirring for about 20min,
then the homogeneous solution was transferred into a 50mL Teflon-
lined stainless steel autoclave that was then sealed, maintained at

200 °C for 24 h. Subsequently the autoclave was allowed to cool down
to room temperature naturally. The resulting precipitates were col-
lected by centrifugation and washed several times with deionized water
and ethanol alternately, then dried in air at 80 °C for 12 h. Finally, the
SnO2/ZnO branched nanostructure was obtained after annealing at
500 °C for 2 h in air atmosphere with a heating rate of 2 °C /min. For the
preparation of rod-like ZnO, all the steps were remain unchanged ex-
cept for the addition of SnCl4·5H2O.

2.2. Characterization

The crystal structure of the obtained products were characterized by
X-ray diffractometer (XRD, Rigaku D/Max-2550 V, Cu-Kα radiation.
λ=1.54178 Å). The morphology and microstructure of the product
was observed by field emission scanning electron microscopy (FESEM)
on a JSM-7500 F (JEOL) microscope operating at an accelerating vol-
tage of 15 kV. Transmission electron microscopy (TEM) and high-re-
solution transmission electron microscopy (HRTEM), and selected area
electron diffractive (SAED) patterns were carried out on a JEM-2200FS
apparatus (JEOL) operating at 200 kV. The energy dispersive X-ray
spectrometry (EDS) result was measured by the TEM attachment. The
surface elemental composition was performed with X-ray photoelectron
spectroscopy (XPS, Thermo ESCALAB 250XI). All of the binding en-
ergies in the XPS analysis were calibrated for specimen charging by
reflecting to the signal of carbon C 1s peak with a binding energy of
284.7 eV.

2.3. Fabrication and gas sensing measurements

The fabrication of gas sensors and gas sensing measurements were
described as follows: the as-prepared products were mixed with deio-
nized water to form a slurry, and then coated on the ceramic tube
(4mm in length, 1.2 mm in external diameter, and 0.8 mm in internal
diameter, attached with a pair of gold electrodes) by a small brush to
form a thick film. After drying in air at room temperature, the device

Fig. 1. Schematic diagram (a and b) and testing system (c) of the sensor.

Fig. 2. XRD patterns of (a) the ZnO nanorods and (b) the SnO2/ZnO composites.
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was calcined at 400 °C for 2 h. The Ni-Cr alloy coil heater was inserted
into the alumina tube to control the operating temperature by adjusting
the heating current. The structure of the sensor is shown in Fig. 1a and
b. The gas-sensing performance of the sensor was evaluated with a RG-2
gas sensing characterization system under laboratory conditions (30 RH
%, 23 °C) as depicted in Fig. 1c. The gas sensing performance of the gas
sensor was investigated using a static system. A given amount of the
tested gas was injected into a closed glass chamber, and the sensor was
put into the chamber for the measurement of the sensitive performance.
The sensor response is defined as the ratio of Ra/Rg, where Ra and Rg

are the resistances of the sensors in air and in target gas, respectively.
The response (τres) and recovery time (τrecov) is defined as the time
taken by the sensor to achieve 90% of the total resistance change in the
case of adsorption and desorption.

3. Results and discussion

3.1. Structural and morphological characteristics

The crystalline structure and the composition of the as obtained
products were identified by means of XRD analysis. Fig. 2 displays the
XRD patterns of the as-synthesized ZnO nanorods and the SnO2/ZnO
composites. Clearly, both of the two products revealed very sharp dif-
fraction peaks due to their high crystallinity. All of the diffraction peaks
in curve (a) were matched well with the hexagonal ZnO (JCPDS No. 89-
1397). Compared with the XRD pattern of pure ZnO anorods, the newly

emerged peaks illustrated in Fig. 2b were well indexed to tetragonal
rutile structure of SnO2 (JCPDS No. 41-1445). It is obvious that no other
impurities were observed which confirmed the final product to be a
composite of ZnO and SnO2.

X-Ray photoelectron spectroscopy (XPS) analysis was also per-
formed to analyze the surface chemical composition and chemical state
of the ZnO and SnO2/ZnO composites. Fig. 3a shows the full range
spectrum of SnO2/ZnO composites, it could be seen that all the peaks
corresponded to Sn, Zn, O and C, no other impurities could be observed,
confirming the high purity of the obtained materials. Fig. 3b displays
the XPS spectra of Sn. Two peaks with binding energies at 486.18 eV
and 494.58 eV could be attributed to the bonding energies of Sn 3d5/2
and 3d3/2, respectively, which were characteristic of Sn4+cations [49].
The bonding energies at 1020.98 eV and 1044.38 eV corresponded to
the Zn 2p3/2 and Zn 2p1/2 (Fig. 3c), respectively, indicating the existing
of Zn2+ [50] in the composites. Fig. 3d and e exhibits the O 1s XPS
spectra of the pure ZnO and SnO2/ZnO composites. It can be found that
both of the tested curves could be decomposed into three significant
oxygen species [51].The lattice oxygen species expressed with OL, the
oxygen vacancy species component was represented with OV, and the
chemisorbed oxygen species component signified as OC. Table 1 lists all
the center positions and the relative percentages of each oxygen species
component peak. The Ov component amount of the two samples almost
had no change. However, it is obvious that the relative percentage of OC

component of SnO2/ZnO composites (32.1%) increased a lot comparing
with pure ZnO rods (13.0%), which was much higher than ZnO rods.
Thus, the surface oxygen absorbed ability was greatly improved, which
enhanced the capable of reacting with test gas molecules, leading to
good gas sensing performance as sensing material.

The surface morphology and microstructure of the products were
investigated by SEM and TEM observations. Fig. 4 shows typical SEM
images of the as-prepared ZnO rods and SnO2/ZnO branched nanos-
tructures. It can be seen that the ZnO rods had uniform morphology and
smooth surface (Fig. 4a and b), and some of the rods stuck together. The
diameter of the ZnO rods was about 500 nm and the length of the rods
was more than 5 μm as shown in the inset of Fig. 4b. The SEM image
(Fig. 4c and d) of SnO2/ZnO nanostructures shows that the as synthe-
sized SnO2/ZnO composites had branched morphology with ZnO as the

Fig. 3. XPS spectra and the fitted data of (a) Full survey scan XPS spectra of branched SnO2/ZnO, (b) Sn 3d, (c) Zn 2p, (d) O 1s of the pure ZnO rods, and (e) O 1s
spectrum of branched SnO2/ZnO composites.

Table 1
Fitting Results of O 1s XPS Spectra of pure ZnO and SnO2/ZnO composites.

Sample Oxygen Species Binding Energy
(eV)

Relative
Percentage (%)

Pure ZnO OL(Zn-O) 529.8 47.4
Ov(vacancy) 530.6 39.5
Oc(chemisorbed) 531.8 13.0

SnO2/ZnO Composites OL(Zn-O) 529.7 22.7
Ov(vacancy) 530.2 45.2
Oc(chemisorbed) 531.6 32.1
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Fig. 4. SEM images of (a and b) pure ZnO and (c–f) SnO2/ZnO composites. (For interpretation of the references to colour in the figure text, the reader is referred to
the web version of this article.)

Fig. 5. SEM images of SnO2/ZnO with different hydrothermal temperature (a) 6 h, (b) 12 h, (c) 18 h, (d) 24 h. (e) Schematic diagram of growing mechanism during
hydrothermal process of branched SnO2/ZnO composites.
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backbones and SnO2 as the branches. Fig. 4d shows that the diameter of
the ZnO was approximately 100 nm which was much thinner than that
of pure ZnO rods (Fig. 4b). It can be seen from the enlarged marked red
rectangle of Fig. 4d in Fig. 4e, the SnO2 branches with 20 nm in dia-
meter were uniformly grown on the ZnO nanorods and formed a six
symmetrical branched structure. Fig. 4f also demonstrated that the
SnO2 branches formed a six symmetrical structure.

In order to investigate the evolution process of the SnO2/ZnO na-
nostructure, time-dependent evolution hydrothermal processes with
different hydrothermal time of 6, 12, 18 and 24 h were carried out, as

shown in Fig. 5. It can be seen that the ZnO and SnO2 were grown
simultaneously under the hydrothermal condition. Fig. 5a shows the
SEM image of the composites after reaction for 6 h, the products were
almost ZnO nanorods. With the reaction time extended to 12 h, some
SnO2 branches appeared on the ZnO backbones and the length of the
SnO2 branches grew with the reaction time (as seen from Fig. 5c). While
the reaction time extended to 24 h, it can be seen in Fig. 5d that the
SnO2 branches were uniformly grown on the ZnO nanorods. The XRD
patterns of the corresponding SnO2/ZnO composites with different re-
action time are depicted in Fig. S1. On the basis of the results stated

Fig. 6. (a) Low magnification and (b) high magnification transmission electron microscopy (TEM) images of SnO2/ZnO composites. (c and d) HRTEM images of
SnO2/ZnO composites. (e) SAED patterns of the SnO2/ZnO composites. (f–i) TEM image of an individual SnO2/ZnO nanostructure and the corresponding elemental
mapping images.

Fig. 7. (a) Response of SnO2/ZnO composites and (b) pure ZnO rods upon exposed to 100 ppm ethanol, acetone, methanol, formaldehyde as a function of operating
temperature.
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above, the formation process of the SnO2/ZnO composites during the
hydrothermal process was proposed, as schematically illustrated in
Fig. 5e.

TEM and HRTEM measurements were carried out in order to get
deeper insight into the structure of the SnO2/ZnO composites. Fig. 6a
and b shows the typical images of the SnO2/ZnO composites, it can be
seen in Fig. 6a that the as-synthesized composites have uniform mor-
phology, SnO2 branches grew on the ZnO backbones. Fig. 6b displays
the high magnification morphology of the products. It is found that the
diameter and length of the ZnO backbones was about 100 nm and 1 μm,

respectively. The SnO2 branches were thin and uniformly grew on the
ZnO backbones. The diameter of SnO2 branches was nearly 20 nm,
while the length of the SnO2 was no more than 500 nm. The TEM
images are matched well with the SEM observation. HRTEM was car-
ried out to further study the detailed lattice structure. The HRTEM
images of the branches marked with red rectangles in Fig. 6c indicate
the lattice fringe spacing of 0.33 nm corresponding to the (110) lattice
plane of SnO2. Fig. 6d shows the HRTEM images of the SnO2/ZnO
backbones. The lattice fringe spacing of 0.26 nm in the two inset images
corresponded to the (002) lattice plane of ZnO. Fig. 6e displays the
selected area electron diffraction (SAED) patterns of the SnO2/ZnO
composites and the result indicates that the SnO2/ZnO composites were
polycrystalline. In addition, the TEM image and elemental mapping of a
single SnO2/ZnO nanostructure are displayed in Fig. 6f–i. It can be seen
that the O and Sn were distributed on both the backbones and branches,
while Zn was only distributed on the backbones. This result agreed well
with the HRTEM images.

3.2. Gas sensing characteristics

The gas sensing properties of the SnO2/ZnO hierarchical structure
and bare ZnO rods to different test gas were measured. Fig. 7a and b
display the response of the two sensors to 100 ppm ethanol, acetone,
methanol and formaldehyde at operating temperature from 175 to
350 °C. It is found that the response of the sensors to different test gas
varied with the temperature, and increased with a raise of operating
temperature, and reached the maximum value, then decreased with
further increasing temperature. The sensor based on SnO2/ZnO reached
the maximum value of 18.1 to 100 ppm ethanol at 275 °C, while the
maximum value reached 4.5 at 300 °C for the sensor based on pure ZnO.
Apparently, the sensor based on the SnO2/ZnO possessed a relatively
low operating temperature and enhanced sensing response.

Since selectivity is an important parameter to evaluate the sensing
performances of gas sensor. Thus, the selectivity of the two sensors was
investigated by exposed to various test gases with a concentration of
100 ppm at the operating of 275 °C and 300 °C, respectively, as shown
in Fig. 8. Obviously the two sensors exhibited much higher response to
ethanol than that of other tested gases, indicating the good selectivity
for ethanol. In addition, it is worth noting that the sensing properties of
SnO2/ZnO composites were greatly improved compared to pure ZnO
sensor, such as the response to ethanol was as 3-fold as high as the pure
ZnO. The sensing performance comparison between pure SnO2, ZnO
and SnO2/ZnO ethanol sensor in reported literature and our present
work was made. As illustrated in Table 2 [52–57], apparently, com-
pared with pure SnO2 and ZnO based sensors, the branched SnO2/ZnO
heterostructures exhibited much higher response at a relatively lower
operating temperature than the others.

Fig. 9a displays the sensing behaviors of the two sensors to ethanol

Fig. 8. Selectivity measurements of the pure ZnO and SnO2/ZnO composites to
various test gases with concentrations of 100 ppm.

Table 2
Comparison of different ethanol gas sensors based on SnO2, ZnO and SnO2/
ZnO.

Sensing
material

Morphology Tem. (oC) Con.
(ppm)

Res. (Ra/
Rg)

Ref.

SnO2 nanospheres 300 100 9.2 [52]
SnO2 Ordinary

nanofiber
250 100 7.6 [53]

ZnO nanoflowers 340 50 3.9 [54]
ZnO nanowire 340 500 10.68 [55]
ZnO flower-like 300 100 13.2 [56]
SnO2/ZnO nanosheets 350 100 13.3 [57]
SnO2/ZnO nanorods 275 100 18.1 This

work

Fig. 9. (a) Dynamic response curves of pure ZnO and SnO2/ZnO composites to different concentrations of ethanol. (b) Dynamic response curves of SnO2/ZnO
composites to ethanol with a concentration of 1–5 ppm.
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with the concentration range from 10 to 100 ppm at 275 °C and 300 °C,
respectively. The gas responses of the two sensors present a stepwise
distribution with the increasing of ethanol concentration. Obviously,
the SnO2/ZnO heterostructure exhibited higher response to ethanol
than that of pure ZnO rods. The corresponding response values of SnO2/
ZnO heterostructure were 4.9, 7.3, 9.0, 10.3, 11.2, 11.6, 13.1, 14.2,
16.3 and 18.1, while for the pure ZnO, the response values were merely
2.0, 2.2, 2.4, 2.7, 2.8, 3.0, 3.1,3.3,3.8 and 4.5. Fig. 9b depicts the SnO2/
ZnO sensor to ethanol with a concentration of 1 to 5 ppm. The response
was 1.0, 1.17, 1.27, 1.32 and 1.41, which indicated the sensor has a low
detection limit.

Fig. 10a displays the dynamic response and recovery curves of
SnO2/ZnO to 100 ppm ethanol at 275 °C. It can be found that the re-
sistance of sensor immediately changed when the sensor was exposed to
tested gases, and then reached a steady state. The response time of the
sensor to ethanol was within 3 s and the recovery time was 38 s. In
addition, Fig. 10b shows the five cycles of the response and recovery
curves of SnO2/ZnO sensor to 100 ppm ethanol at 275 °C, indicating
stable and repeatable characteristics of the sensor to ethanol.

3.3. Gas sensing mechanism

The basic sensing mechanism of n-type semiconductor sensors has
been well documented with the space-charge layer model [58,59]. The
conductivity of semiconductor will change when the gas sensor is ex-
posed to different gases. This is the basic working principle of oxide
semiconductor sensors. In ambient air, oxygen molecules can absorb on

the surface of the sensing material and form surface absorbed oxygen
species (O2

−
(ads), O−

(ads) and O2−
(ads), Eqs. (1)–(4)) by capturing free elec-

trons from their conducting bands. The reaction can be described as
follows: [60]

O2→O2 (ads) (1)

O2 (ads) +e−→O2
−
(ads) (2)

O2
−
(ads) +e−→2O−

(ads) (3)

O−
(ads) +e−→O2−

(ads) (4)

In this process, a thick electron depletion layer will be formed on the
surface, resulting in a decrease of carrier concentration and an increase
of sensor resistance. When the sensor is exposed to reducing gases at a
moderate temperature, the absorbed oxygen species will react with
these gas molecules. As a result, the electrons trapped in the oxygen
species are released back into the conduction band, leading to the de-
crease of the thickness of depletion layer and the resistance of the
sensor.

The gas sensing selectivity can be affected by many factors ac-
cording to the literature, such as the LUMO (lowest unoccupied mole-
cule orbit) energy of gas molecule and the amount of gas adsorption on
the sensing material at different operating temperature. A lower LUMO
energy will reduce the energy needed for gas sensing reaction.
Moreover, the electron affinity is affected by the orbital energy of the
gas molecule, if the value of LUMO energy is lower, the gas molecule
ability in capturing electrons will be stronger. Therefore, at the

Fig. 10. (a) response transients of SnO2/ZnO composites to ethanol with a concentration of 100 ppm at 275 °C. (b) Five periods of reponse-recovery curve to 100 ppm
ethanol at the operating temperature of 275 °C.

Fig. 11. Schematic diagrams of the energy band structure of the SnO2/ZnO heterostructures in air and ethanol.
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operating temperature of 275 °C, due to the LUMO energy of ethanol is
lower than other test gases, the ability of capturing electrons of ethanol
will be stronger than other test gases, and therefore the sensor will
exhibit higher response to ethanol [61].

The above experimental results demonstrated that the SnO2/ZnO
heterostructure exhibited much better sensing performances than that
of pure ZnO. The enhancement in sensing response of SnO2/ZnO can be
attributed to the following factors. First, the surface of ZnO backbones
are not completely enclosed by SnO2 branches, resulting in both of the
two oxides being highly accessible for the adsorption of oxygen mole-
cules and promoting the formation of depletion layers on the surface.
Therefore, the synergetic effect of the two oxides maybe contributes to
the enhancement of the sensing performance compared to the pure
ZnO.

Secondly, the work functions of ZnO and SnO2 have been reported
to be 5.2 and 4.9 eV, respectively [62], which leads to the formation of
heterojunction between ZnO and SnO2. A proposed energy band
structure diagram of the SnO2/ZnO heterojunction is elucidated sche-
matically in Fig. 11. The electrons will flow from SnO2 to ZnO until
their Fermi levels equalize. This process creates an electron depletion
layer on the surface of SnO2 and further bends the energy band and lead
to a higher resistance state of the SnO2/ZnO material. When the sensor
exposes to reductive gas atmosphere at a moderate temperature, the
trapped electrons are released back to the conduction band of SnO2/
ZnO material due to the reaction between these gas molecules and the
absorbed oxygen species. Consequently, the conductivity of the het-
erostructures will be greatly increased, which results in high response.

4. Conclusion

In summary, the branched SnO2/ZnO heterostructures composed of
ZnO as backbones and SnO2 as branches were successfully synthesized
through a facile one-step hydrothermal method. The morphological and
structural properties of the composites were characterized by various
analysis techniques. The structure features of the composites at dif-
ferent reaction stages were investigated to explore the formation me-
chanism of such novel structure. Subsequently, the as-synthesized
composites were fabricated gas sensor, and their sensing performances
were evaluated. The results turned out that the SnO2/ZnO composites
exhibited excellent ethanol-sensing properties. The reason of perfor-
mance improvement has been discussed. This is because the ZnO and
SnO2 formed N–N heterojunction which greatly increase the resistance
of the sensor compared pure ZnO. This is the main reason for the en-
hanced response to ethanol. This study provides a rational way for the
design and fabrication of the chemiresistive gas sensor with high per-
formance.
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