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A B S T R A C T

Acetone sniffer, because of its ability of continuous non-invasive monitoring, is recognized as a potential method
for the diagnosis of diabetes. In this study, mixed potential electrochemical sensors based on YSZ and K2NiF4
-type oxides Sm2-xSrxNiO4 (x=0.4, 0.6 and 0.8) sensing electrode were fabricated as bio-sniffer for diagnosis of
diabetics by detecting acetone concentration in exhaled breath. The results showed that when Sm1.4Sr0.6NiO4

was used as sensing material, the fabricated sensor exhibited the best performance in comparison with other
sensors, the present device also exhibited prominent reliability, excellent humidity resistance and good stability
over 30 days. What’s more, the low detection limit of sensor to acetone was 300 ppb, indicating that the sensor
had ability for acetone detection in exhaled breath. The exhaled breathes of the diabetics with ketosis were used
for detection and results showed that the sensor had a manifest and stable signal. Besides, the response and
recovery time were also acceptable to real-time detection. In addition, the relationship of the blood ketone level
and the acetone concentration in exhaled breath was given in the paper. Above all, the fabricated sensor has
enormous potentiality for the diabetes monitoring through breath analysis.

1. Introduction

In the past ten years, with the improvement of people's living
standards, aging population and lifestyle changes, the number of dia-
betics demonstrated a rapid growing trend, diabetes has been a major
health threat and social threat to humanity and attracted worldwide
attention [1,2]. At present, the diagnosis of diabetes is depended on
blood analysis, which might bring pain to the patient and have a certain
probability of infecting illness [3]. According to the Pathologic surveys
and studies [4–6], when the body is sick, the metabolite in human body
is changed and enters the bloodstream, causing the change in the
content of blood metabolites, which enter the lungs through the blood
barrier and exhale out of the body, leading the change of some specific
gas concentration in human breath [7–10]. Breath analysis, owing to
the similarity with blood analysis and non-invasion, has high applica-
tion prospect and research significance in disease diagnosis, human
metabolism monitoring and drug developing, especially in diabetes
diagnosis [11–13]. In ordinary circumstances, human blood contains a
small amount of ketone bodies (0.03–0.5mmol/L), however, for dia-
betes patients with ketosis, due to fat metabolism worsens, the

concentration of ketone in blood would increase [14]. Blaikie et al. [15]
had investigated that the amount of acetone in human breath and blood
ketone concentration performed a strong positive correlation, therefore
the level of acetone in human breath was regarded as an important
biomarker to reflect the ketone body level in blood. According to the
literature, the concentration of acetone in healthy human breath was
0.3–1 ppm, however in diabetics breath is 1–20 ppm or even higher
[16,17]. Hence, it is useful to monitor blood ketone levels of human
through non-invasive blood test methods for the prevention and early
diagnosis of diabetes. If selective acetone sensing could be performed at
the sub-ppm level, noninvasive diabetes monitoring through breath
analysis would become possible [18–20].

Human breath contains thousands of VOCs [21], complicated
component and low in concentration. Hence, the detecting technique
for the analysis of one gas component should have high sensitivity and
selectivity, furthermore, the response and recovery time is also an im-
portant parameter in POCT (point of care testing). Recently, the de-
tection of low concentration gas depends on gas chromatography/mass
spectroscopy (GC/MS) and differential mobility spectroscopy (DMS)
[22], which is not suitable in diabetes diagnosis because of large size,
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high price and disability to real-time detection. Owing to low price,
simple fabrication, real-time diagnosis, gas sensor has been considered
as a simple and effective approach for acetone detection and became
one of the most written topics [23–27]. In various gas sensors, YSZ-
based mixed potential electrochemical gas sensor, because of its high
sensitivity, low detection limit and good stability, has been widely in-
vestigated. Lately, according to the literature [28–34], the performance
of mixed potential type gas sensors was closely related to the sensing
material, and most researchers focused on the type of sensing material
and whether single oxides or complex oxides were investigated to
fabricate YSZ-based sensor for acetone detection [35,36], which per-
formed some surprising properties, however, it is also a challenge to
fabricate the YSZ-based sensor with low detection limit and good se-
lectivity.

As a type of function material, K2NiF4 -type oxides have been in-
vestigated and used in many electrochemical fields. According to the
previous reports, researchers successfully used Sr to replace a part of
Sm to compound a new type complex oxide Sm2-xSrxNiO4, which per-
formed good properties in the solid oxide fuel cell field [37]. However,
there was few literature about using Sm2-xSrxNiO4 as sensing electrode
to fabricate YSZ-based mixed potential type sensor. Consequently, in
this paper, a type of K2NiF4 -type oxides Sm2-xSrxNiO4 was synthesized
to fabricate the YSZ-based mixed potential gas sensor, and the samples
of diabetics out-breath were collected for the clinical detection using
the sensor we fabricated.

2. Experimental

2.1. Preparation and characterization of Sm1-xSrxNiO4 sensing electrode
material

The Sm2-xSrxNiO4 (x= 0.4, 0.6 and 0.8) were prepared by a simple
sol-gel method. Samarium nitrate hexahydrate (Sm(NO3)3·6H2O),
strontium nitrate (Sr(NO3)2), nickel nitrate hexahydrate (Ni
(NO3)2·6H2O) and citric acid (CA) were purchased from Sinopharm
Chemical Reagent Co., Ltd and used as raw materials, besides, all of
materials were of analytic grade without further purification. The
synthetic process of the sensing materials was as following.

Initial reagents samarium nitrate, strontium nitrate and nickel ni-
trate in their stoichiometric ratios were dissolved in the double distilled
deionized water, separately. The strontium nitrate solution and nickel
nitrate solution were dropped wise into the samarium nitrate solution,
and the mixed solution was stirring in the water bath at 60 °C to form
precursor solution. Citric acid with the mole proportion of citric acid
and total metal iron (n(Sm3+ + Ni2+ + Sr2+))= 1:1 was dropped into
the mixed solution. And the resultant solution was stirred at 80 °C for
two hours until a gel was obtained. Then, the obtained gel was main-
tained at 80 °C for 48 h at a vacuum drying oven. Finally, the precursor
gel was introduced into a muffle furnace and sintered at 1000 °C for 5 h
to get target products.

The structure and phase stability of the materials were characterized
by X-ray powder diffraction on a Rigaku wide-angle X-ray dif-
fractometer (D/max rA, using Cu Kα radiation at wave length=
0.1541 nm) in the angular range of 2θ=20-80°. The morphology and
micro-structure of the sintered electrodes were examined with Hitachi
JSM-7500 F FEG-SEM operating at 15 kV.

2.2. Fabrication and measurement of gas sensor

The sensor was manufactured utilizing YSZ plate (8 mol% Y2O3-
doped, 2mm×2mm square, 0.3mm thickness, provided by
Anpeisheng Corp. China). The relative description in the supporting
information and the detailed structure of the sensor we fabricated was
shown in our previous work [38]. The Pt heater provided enough heat
in order to satisfy the right temperature to the sensors with a linear DC
Power Supply (Gwinstek GPD-3303S), The gas sensing performance of

the gas sensors were investigated using a digital electrometer (Rigol
Technologies, Inc, DM3058, China). The complex impedance of the
sensor in sample gas was measured by means of an impedance analyzer
(Solartron, 1260 and Solartron, 1287) in the frequency range of 0.1 Hz-
1M Hz. The obtained results were recorded with a computer connected
to the electrometer. When exposed to air or sample gas, it has a series of
voltage signals because of the difference of the electric potential be-
tween the SE and RE of the sensor, The response of the sensor (ΔV) was
given by ΔV=Vacetone-Vair, and the time of the sensor exposed to the
sample gas containing different acetone concentration was approxi-
mately same, in this case, Vacetone denote the figure of the last second
in the sample gas and Vair denote the figure of the last second in the air.
The exhaled human breathes in this work were offered by The Second
Hospital of Jilin University and all experiments presented in this work
were performed in compliance with the relevant laws and institutional
guidelines of China. The sample gas of every volunteers was collected
into a gas-collecting bag. Before measurement, an airtight chamber
with volume of 1 L was pumped into vacuum pressure, then, the sample
gas was pressurized into chamber by difference pressure, finally the
sensor fabricated was placed in the airtight chamber.

3. Result and discussion

The crystallographic structure of the sensing materials Sm2-xSrxNiO4

was characterized by X-ray powder diffraction (XRD) analysis, the re-
sults and related discussion exhibited in support information identifies
that the materials we compounded was the oxides of K2NiF4-type
structure. In addition, the micro-structure of the sensing materials Sm2-

xSrxNiO4 was investigated by FESEM and the SEM images are shown in
support information. The sensing materials have been reunited because
of high sintered temperature of 1000 °C, causing the sensing material to
perform a porous structure, which is important for the sensing perfor-
mance of the sensor. According to the early work by Co-workers
[39,40], the sensing characteristics of the present devices abide by the
mixed-potential theory and it has the following electrochemical reac-
tions for the sensor.

In air: O2, Sm2-xSrxNiO4 / YSZ / Pt, O2

In sample gas: C3H6O+O2, Sm2-xSrxNiO4 / YSZ / Pt, C3H6O+O2

The reaction (1) occurred at the process that sample gas went
through the electrode layer, which caused a portion of consumption and
decreased the gas concentration arriving at the TPB (triple phase
boundary, the interface of Sm1-xSrxNiO4-SE, acetone and YSZ), hence,
the sensing material should be porous in order to accelerate diffusion
speed and decrease the consumption. The electrochemical cathodic (2)
and (3) reactions took place at TPB at the same time and a local cell was
formed at SE when the sensor under the acetone gas atmosphere. Till
the electrochemical reactions occurred at the same rate, a dynamic
equilibrium reached, and the electrode potential in this time is called
the mixed potential. The potential difference between the sensing
electrode and reference electrode is required and regarded as the sen-
sing signal.

C3H6O + 4O2 → 3CO2 + 3H2O (1)

4O2 + 16e− → 8O2− (2)

C3H6O + 8O2− → 3CO2 + 3H2O + 16e− (3)

Fig. 1(a) shows the response of the sensor based on Sm2-xSrxNiO4-
SE. It was obviously seen that all of the sensors had a clear response to
5 ppm acetone, furthermore, the sensor based on Sm1.4Sr0.6NiO4-SE had
the largest response of −21mV to 5 ppm acetone in comparison to the
sensors based on other materials. In order to explain the difference of
sensing responses of the sensor based on Sm2-xSrxNiO4-SE, we put the
sensors into the sample gas of N2 and 5 ppm acetone, in this case,
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without oxygen, the reaction (1) rarely occur, hence we can compare
the effects of reaction (1) and reaction (2, 3) on the sensing property of
the sensor by comparing the response of the sensor to 5 ppm acetone
and a mixture of nitrogen and air [41]. The responses of the sensor
based on Sm2-xSrxNiO4 (x= 0.4, 0.6 and 0.8)-SEs to the sample gas of
N2 and 5 ppm acetone could be seen in Fig S3, we named the response
of the sensor to the sample gas of N2 and air were VN and Vair, re-
spectively, all the responses of the sensor based on Sm2-xSrxNiO4

(x= 0.4, 0.6 and 0.8)-SEs had increased, however, the degrees of im-
provement were about nearly same, the radio between the response of
ΔV (VN-Vair) and Vair were 33%, 35% and 30%, respectively, which
indicated that the influence of the reduction to reaction might not a
main parameter at 675 °C. We considered that the improvement of the
response was mainly depended on the enhanced electrochemical ac-
tivity at the TPB, therefore the complex impedance was investigated
and result is shown in Fig. 1(b). The appropriate equivalent circuit was
also shown in Fig. 1(b), the Ohmic resistance and interfacial resistance
was also shown in Table 1. According to the reported literature [42,43],
The intercept of the high frequency arc with the real axis corresponds to
the ohmic resistance of the device, and that of the low frequency re-
presents the total resistance, The difference between ohmic resistance
and total resistance is the resistance of the interface between the elec-
trolyte and electrode. The ohmic resistance of the device, which based
on the intrinsic property, had almost no change at a steady tempera-
ture, the interfacial resistance represents the strength of the electro-
chemical reaction, which are typically related to mass transport pro-
cesses such as gas diffusion and adsorption. Miura et al. reported that

the sensitivity of sensor might be attributable to the change in the re-
sistance of electrochemical reaction between the interface of YSZ/oxide
SE and sample gas at a high temperature. Obviously, the interfacial
resistance of the sensor based on Sm1.4Sr0.6NiO4-SE was decreased
compared with other sensors at the lower frequency range, Table 1
shows the accurate interfacial resistances of the sensors based on Sm2-

xSrxNiO4-SE. Changes in the interface resistance measured in different
sensors mean the ability of electrochemical catalytic activity and the
result revealed that Sm1.4Sr0.6NiO4-SE performs the highest electro-
chemical catalytic activity [43], which was conformed to the sensing
properties of the sensor based on Sm2-xSrxNiO4-SE performed. Conse-
quently, the sensor attached with Sm1.4Sr0.6NiO4-SE has highest sensi-
tivity to acetone in comparison with other sensors.

The optimum operating temperature, viewed as a necessary para-
meter, was investigated as seen in Fig. 1(c), the response and recovery
transients of the sensor to 2 ppm in different operating temperatures
(605 °C, 640 °C 675 °C and 710 °C) were clearly exhibited and it was
obvious that the response to 2 ppm acetone at the operating tempera-
ture of 675 °C was highest in comparison with that at other operating
temperatures. Moreover, it should be noted that the response to 2 ppm
acetone shifted upward as the operating temperature increased from
605 °C to 675 °C, but shifted downward suddenly above 710 °C. The
reason of this phenomenon had been interpreted in our previous work
[44]. Hence, the optimal working temperature was ensured to be 675 °C
and the sensing performances were investigated mainly at present
temperature in the next work.

The response and recovery property of the sensor based on
Sm1.4Sr0.6NiO4-SE to different acetone concentration was shown in
Fig. 2(a). It was surprising that the low detection limit of the sensor was
300 ppb and the response value was -1.8 mV, which displayed the
ability of low concentration acetone detection and performed the po-
tential to detect diabetes. In addition, for the purpose of intuitively
showing the response and recovery property, the response and recovery
transient to 2 ppm acetone was separate and exhibited in Fig. 2(b), it
was clearly seen that the typical 90% response was 16 s and the re-
covery time was approximately 20 s, which is acceptable for a

Fig. 1. (a) The response for the sensors based on Sm2-xSrxNiO4

(x=0.4, 0.6 and 0.8)-SEs to 5 ppm acetone. (b) Complex
impedance curves in 5 ppm acetone for the sensors attached
with Sm2-xSrxNiO4 (x= 0.4, 0.6 and 0.8)-SEs. (c) The response
of sensor attached with Sm1.4Sr0.6NiO4-SE to 2 ppm acetone at
different operating temperatures.

Table 1
Ohmic resistance and interfacial resistance of the sensors based on Sm2-

xSrxNiO4 (x= 0.4, 0.6 and 0.8)-SEs to 5 ppm acetone at 675 °C.

Sensing Electrode Ohmic Resistance (kΩ) Interfacial Resistance (kΩ)

Sm1.6Sr0.4NiO4 97 472
Sm1.4Sr0.6NiO4 97 390
Sm1.2Sr0.8NiO4 98 502
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successful sensor. Moreover, Fig. 2(c) shows the dependence of ΔV on
the logarithm of corresponding acetone concentration for the sensor at
675 °C. As the results exhibited, ΔV and the logarithm of acetone con-
centration in the examined range of 0.3–100 ppm performed a linear
relationship, which conformed to the mixed potential theory [45–48].
The slope of the sensor acetone was −13mV/decade in the examined
range of 0.3–5 ppm and-55mV/decade in the examined range of
5–100 ppm, which was considered as sensitivity. The reasons of this
phenomenon were depended on the energy of the electrochemical and
the diffusion process, which was investigated carefully in our early
studies [44]. The relationship of ΔV and the logarithm of acetone
concentration might be described as followed equation (Eq. 1):

= − − < <

= − + < <

ΔV C ppm C ppm
ΔV C ppm C ppm

13lg 7.9(0.3 5 )
55lg 21(5 100 )

Fig. 2(d) shows the continuous response and recovery characteristic

of the sensor to 10 ppm acetone. As can be seen, the response value of
the present device performed little fluctuation and the highest and
lowest change errors of continuous responses, respectively, this result
indicated that the sensor we fabricated could work continuously.

Human breath contains the number of water vapor, which might
cause a great influence on the sensitivity of the sensor. Thus, the re-
sponses for the sensor attached with Sm1.4Sr0.6NiO4-SE to 10 ppm and
1 ppm acetone in the relative humidity (RH) range of 20–98% at 675 °C
were measured as shown in Fig. 3(a), the change amplitudes of the
response for the sensor were about -12% to 9%–10 ppm acetone, and
-10% to 8% to 1 ppm acetone, indicating that the impact of RH on the
responses for the sensor was so tiny that can be ignored, the sensor we
fabricated showed good humidity resistance both at high acetone
concentration and at low acetone concentration. It was widely known
that human breath contains a lot of ingredient, such as methanal, me-
thanol, ethanol, CO2, and so on which can disturb the sensor we

Fig. 2. (a) Response and recovery
transient curves for the sensor attached
with Sm1.4Sr0.6NiO4-SE to different
concentrations of acetone in the range
of 0.3–100 ppm at 675 °C. (b) The re-
sponse and recovery transient curves of
sensor to 2 ppm acetone. (c)
Dependence of ΔV for the sensor at-
tached with Sm1.4Sr0.6NiO4-SE on
logarithm of acetone concentration in
the range of 0.3–100 ppm at 675 °C. (d)
Continuous response-recovery tran-
sient curves to 10 ppm acetone for the
sensor using Sm1.4Sr0.6NiO4-SE at
675 °C.

Fig. 3. Response and recovery transients for the sensor using Sm1.4Sr0.6NiO4-SE annealed at to (a) 10 ppm acetone and (b) 1 ppm acetone under 20%, 40%, 60%, 80%
and 98% RH at 675 °C.
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fabricated to make it out of work, therefore, the selectivity was one of
the most important sensing properties for the sensor, and Fig. 4(b)
shows the response signals for the sensor attached with Sm1.4Sr0.6NiO4-
SE to a series of interfering gases at 675 °C. The sensor displayed the
highest response signal to 5 ppm acetone compared with the other
gases.

Moreover, the stability of the sensor attaching with Sm1.4Sr0.6NiO4-
SE was explored by continuous test at 675 °C during 40 days. The re-
sponse of the sensor to 2 ppm acetone was tested every day and the
consequence is exhibited in Fig. 5(a) and (b). The change of the ΔV
(ΔVs) to the sensor was in the form of ΔVs = [(ΔVn-ΔV0)]/ΔV0 ×
100%, the meanings of ΔVn and ΔV0 respectively were the response
values of the sensor on the n and initial day, respectively. The changes
of response value for the present sensor to 2 ppm acetone was about
-9.1% on the 30th day. In addition, the response and recovery curve for
the present device to 2 ppm acetone on the initial, 10th, 20th, and 30th
days shown in Fig. 5(a) also further demonstrated the good stability. In
conclusion, the device we fabricated could be used in a complex en-
vironment to work for a long time.

According to the above sensing analysis, clinical detection was ap-
plied to test the sensing performance of the sensor we fabricated in
human breath. For detection, 6 diabetics and 1 healthy people parti-
cipated in the test. The blood ketone concentrations tested from the
second hospital of Jilin University were collected and listed in Table. 2.
As can be seen, the response and recovery transient exhibited in Fig. 6
shows that the sensor had conspicuous and stabilized signals to the
exhaled breathes of all volunteers. The sensor also performed fast re-
sponse and recovery properties to every tests, which was acceptable for
real-time detection, Furthermore, with the increase of the blood ketone
concentration, the response had an evident increase as shown in Fig. 6,

the dependence of ΔV on the corresponding blood ketone concentration
was exhibited in Fig. 7(a). It is apparently seen that the response had a
good positive correlation to the blood ketone levels, the concentration
of the acetone could be approximately assumed by Eq. (1) and Fig.7(b)
exhibited that the acetone concentration also had a positive correlation
to the blood ketone level, which was in good agreement with the ex-
perimental results shown in other recent reports. (The detailed statistics
were listed in Table 2).

Among the literature recently published [49], the critical con-
centration of blood ketone is 0.4mmol/L, when the blood ketone of one
person was above this level, He or she would have a high probability of
developing diabetes with ketosis. Thus, we have also gathered 3 ex-
haled breathes of the diabetics with the ketone concentration of
0.4 mmol/L for detection, the volunteers were abbreviated to V1, V2
and V3 respectively, and the result was exhibited in Fig. 8. The sensor

Fig. 4. (a) The responses for the sensor based on Sm1.4Sr0.6NiO4-SE to 5 ppm
various gases at 675 °C.

Fig. 5. (a) Long-term stability for the sensor attached with Sm1.4Sr0.6NiO4-SE to 2 ppm acetone. (b) Response and recovery transients for the sensor Sm1.4Sr0.6NiO4-SE
at 675 °C to 2 ppm acetone on the initial, 10th, 20th and 30th days at 675 °C.

Table 2
Comparison of the observed mixed potential and the estimated acetone con-
centration for the sensors attached with Sm1.4Sr0.6NiO4-SE to the exhaled
breath diabetics with different blood ketone levels.

Blood ketone. Conc
(mmol/L)

Mixed potential
(observed) (mV)

Acetone. Conc
(estimated) (ppm)

0.3 −7 0.85
0.4 −9.8 1.45
0.8 −14 2.94
1.7 −20 5.56
1.9 −22 5.80
7.1 −30 8.46

Fig. 6. The response and recovery transient curves of sensor to the volunteer of
different blood ketone levels.
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we fabricated performed stabilized response and recovery properties to
every exhaled breathes, the values of the responses were −10mV,
−9.8mV and −9.5mV respectively, obviously higher than that to
healthy people (−2mV) (shown in Fig. 6). Hence, the sensor we fab-
ricated has ability to distinguish the diabetic with ketosis from healthy
person. In conclusion, the present device performed stabilized and
credible properties in clinical detection, which indicated that the sensor
we fabricated performs ability to detect the diabetes with ketosis and
has great potentiality for the diabetes monitoring through breath ana-
lysis.

4. Conclusion

In summary, YSZ-based mixed potential gas sensor with Sm2-

xSrxNiO4 (x= 0.4, 0.6, and 0.8)-SEs synthesized by sol-gel method was
fabricated and used as a bio-sniffer for detection of acetone at 675 °C.
The sensor attached with Sm1.4Sr0.6NiO4-SE exhibited the largest re-
sponse to acetone in 5 ppm concentration at 675 °C in comparison to
those of using other sensing electrode materials. The present sensor also
shows the low detection limit of 300 ppb to acetone, which had a
faithful value of −1.8 mV. Moreover, the present device also displayed
good repeatability, selectivity, humidity resistance, and stability in 30
days work. What’s more, the human breathes of healthy people and
diabetics with ketosis were gathered for the detection and the result
shows that the sensor we fabricated has evident and stabilized response
signal to exhaled breathes of every volunteers, whether healthy people
or diabetics with different ketone concentrations. Therefore, according
to the acceptable acetone sensing properties, the present fabricated

sensor is considered as a candidate in the aspect of monitoring acetone
and has great potentiality for the diabetes monitoring through breath
analysis.
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