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A B S T R A C T

Spinel-type oxides have attracted a broad interest in sensing materials research owing to their high catalytic
activity and flexibly tunable chemical properties. Here, we report the synthesis of superfine porous NiFe2O4

microspheres by one-step solvothermal approach, in order to fabricate ultra-sensitive acetone sensors for real-
time monitoring, relying on the high catalytic activity of NiFe2O4 and effective mass transfer property of porous
microspheres structure. The porous NiFe2O4 sensors displayed high selectivity to acetone against other inter-
fering gases, giving a high sensitivity (27.4), fast response time (2 s) towards 100 ppm acetone and low detection
limit (200 ppb) at 250 °C. This paper proposed a general approach for fabricating highly sensitive gas sensor
based on spinel-type oxides in monitoring volatile organic pollutants.

1. Introduction

Acetone is considered to be a representative organic compound,
which has been widely used in different industrial production, but
prolonged and repeated exposure to acetone gas may cause diversiform
negative physiological pain, such as emesis, spasm, coma, central ner-
vous system anesthesia and liver damage [1,2]. In addition, the exhaled
breath of diabetics contains higher concentration acetone (> 1.8 ppm)
than that of healthy person (0.3−0.9 ppm) [3–5]. Therefore, to ensure
human safety and early diagnosis of diabetes, it is urgently desirable to
develop new approaches for high-efficiency detecting acetone gas.

General approaches are employed to detect acetone based on cata-
luminescence [6,7], optical fiber sensor [8,9], and infrared analyzer.
Over the past decades, many researches have focused on fabricating gas
sensors based on SnO2 [10–12], ZnO [13,14], and α-Fe2O3 [15–17],
because of their distinctive properties in high sensitivity, real-time
detection and low power consumption, which are considered as pro-
mising candidates [18–21]. Although significant advances have been
made in these oxides, the development of new sensing materials to meet
increased demand, such as low operating temperatures, rapid response
and recovery speed, still remains challenge [22]. Accordingly, great
efforts have been applied including the design of novel material
structures, loading precious metals [23,24] and doping transition me-
tals [25,26]. Through reading the literature, it is found that gas sensors

based on bimetallic oxide with spinel structure began to be concerned
by many researchers, such as ZnCo2O4 [27] and ZnFe2O4 [28,29],
which opened up another exploration direction of gas sensor [30–33].
NiFe2O4, as a member of the cubic spinel ferrite materials with dis-
tinctive chemical properties [34–36], are applied to many new fields
during the past decades, such as lithium ion storage [37], catalytic
material [38], sorbent for organic pollutants [39]. Significantly,
Shenzhou VI space mission of China has used NiFe2O4 to convert the
astronauts' exhaled carbon dioxide into oxygen. In terms of gas sensors,
Reddy et al. prepared nickel ferrite by citrate process and preliminarily
proved the possibility of nickel ferrite material for the selective detec-
tion of chlorine gas [40,41]. Zhou et al. have prepared core-in-hollow-
shell NiFe2O4 sensor, which exhibited a response of 10.6–100 ppm
acetone gas [42]. Besides, NiFe2O4 nanorods have been prepared by
Chu et al. and the sensor based on NiFe2O4 nanorods exhibited high
response and good selectivity to triethylamine [43]. Even so, gas sen-
sors based on NiFe2O4 materials usually showed a relatively low gas
response and high detection limit, therefore the design and synthesis of
NiFe2O4 materials with innovative structure and excellent sensing
performance remain a daunting task.

Herein, we report a facile approach for the synthesis of porous
NiFe2O4 microspheres by combining one-step solvothermal route with
heating annealing procedure [44,45]. As demonstrated by experimental
results, the gas sensors based on porous NiFe2O4 microspheres
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exhibited high response (27.4) to 100 ppm acetone, low detection limit
(200 ppb) and excellent repeatability at the optimum working tem-
perature of 250 °C.

2. Experimental procedure

2.1. Preparation of NiFe2O4 microspheres

Porous NiFe2O4 microspheres was synthesized by a one-step reac-
tion described as follows: typically, nickel chloride hexahydrate (NiCl2 •
6H2O, 0.59 g) and ferric chloride hexahydrate (FeCl3 • 6H2O, 1.35 g)
were dissolved completely in 40ml of ethylene glycol (EG) under
strongly magnetic stirring. When the solution turned transparent
brown, 3.00 g of sodium acetate (NaAc) was added providing an alka-
line reaction environment. With continuous stirring, the solution im-
mediately changed to an even dark brown mixture. Finally, the mixture
was poured into a 50ml of Teflon-lined stainless-steel autoclave, which
was then tightly sealed and reacted at 200 °C for 24 h in an electric
oven. After being cooling to room temperature naturally, the resulting
precursor was centrifuged under 10,000 rpm and washed 6 times with
deionized water and ethanol alternately, then dried in air at 80 °C for
12 h. Finally, the dried sample was annealed at 600 °C for 4 h under air
atmosphere.

2.2. Fabrication and measurement of gas sensor

To demonstrate the application of the as-synthesized NiFe2O4

sample in gas sensing, we also fabricated two gas sensors based on
Fe2O3 and NiO samples to compare the sensing performance, which
were both commercial chemicals. The fabrication process of the sensor
devices and the schematic diagram of such device were shown in Figure
S1. Static gas test system was applied to obtain the gas-sensing per-
formance of the samples [46]. The tested gases under different relative
humidity were obtained by adjusting the humidity chamber (Shanghai
ESPC Environment Equipment Corporation, China), while maintaining
the humidity chamber temperature as same as the laboratory tem-
perature of 25 °C.

The gas response for n type semiconductor is defined as S=Ra/Rg,
where Ra and Rg are the resistances measured in fresh air and the re-
ducing gases tested in the environment (acetone, ethanol, methanol,
H2S, etc.), respectively. In contrast, for p type semiconductor the gas
response is defined as S=Rg/Ra [47].

3. Results and discussion

3.1. Structural and morphological characteristics

XRD analysis of the sample was shown in Fig. 1, which was used to
characterize the crystal structure and purity of as-prepared product.

The XRD pattern clearly depicted that all the recorded diffraction peaks
could be unequivocally assigned to spinel NiFe2O4 with a lattice con-
stant of a= 8.337 Å, which reach to good accordance with the reported
peak value from the standard JCPDS card No. 86-2267. The well-de-
fined and sharp peaks indicated that samples had a high crystallinity
and no phases assigned to impurities were detected, certifying the high
purity of the sample.

Fig. 2 displayed the XPS spectra measured to analyze the compo-
sition and surface oxygen species of the sample. All of the binding en-
ergies in the XPS analysis were corrected according to the C 1s peak (set
at 284.6 eV). In the full range spectra (Fig. 2a), several sharp peaks
attributed to Ni, Fe, O, and C were tested as expected. The high carbon
peak in the spectrum probably came from the organic pollutants which
attached to the surface of the material because the synthesis route was
solvothermal method. The Ni 2p spectra shown in Fig. 2b revealed a
strong fitting peak (855.1 eV) assigned to Ni 2p3/2 [48]. Seen from
Fig. 2c, two main peaks were measured in Fe XPS spectra: the binding
peak of 725.9 eV implied Fe 2p1/2, and the Fe 2p3/2 spectra were de-
composed into two different peaks at the binding energy of 711.0 and
713.7 eV, which suggested that the Fe3+ species occupied two chemical
states, the tetrahedral and the octahedral environment in cubic struc-
ture [49–51]. Besides, because NiFe2O4 was surface resistance-type
sensing materials, the interaction between surface adsorbed oxygen and
surface layer of gas sensor greatly affects gas sensitivity. Therefore, in
order to analyze the status of oxygen species, the O 1 s XPS spectrum of
porous NiFe2O4 microspheres was exhibited in Fig. 2d, which was de-
composed into three fitted peaks by Gaussian simulation peaks, cen-
tered at 530.05 eV (the lattice oxygen OL), 531.5 eV (the oxygen va-
cancy regions OV) and 532.6 eV (the surface oxygen OC), respectively.
Three fitting binding energy peaks are approximate to the results of
Alenezi et al and Kim et al. [52,53]. It can be known that the OL peak of
O 1s spectrum was attributed to O2− ions, which accumulate in the
spinel NiFe2O4 to form tetrahedral and octahedral structures centered
on Ni2+ ions and Fe3+ ions. Therefore, the OL component can be at-
tributed to the Ni-O bonds and Fe-O bonds. The OV component of the O
1s peak is associated with O2− ions that are in oxygen-deficient regions
within NiFe2O4. The OC peak is usually attributed to chemisorbed or
dissociated oxygen on the surface of NiFe2O4, such as adsorbed H2O or
adsorbed O2 [54–56]. Besides, it has been proved that below 150 °C the
molecular species (O2-) dominate and at higher temperature of
150–400 °C the ionic species (O- and O2-) dominate [57,58]. Among the
three oxygen species, OC accounted for 24.7% of the total components,
and such a large proportion indicated that the surface of the material
had a great capacity to absorb oxygen, which helped to react with more
test gas molecules and had the prospect of becoming a good gas sensing
material.

FESEM and TEM measurements were applied to provide morpho-
logical and structural properties of the NiFe2O4 product. Fig. 3a was the
morphology of the composite material at low magnification. In this
figure, there were about 112 microspheres used to made a microsphere
diameter distribution diagram (shown in Fig. S2), and it was found that
the average diameter of the synthesized material was 150 nm. The inner
illustration in Fig. 3a indicated that the synthesized NiFe2O4 product
was composed of uniform and well-dispersed microspheres with a
diameter of 150 nm. The high-magnification FESEM and TEM images in
Fig. 3b–d could be clearly observed that a single NiFe2O4 microsphere
had a rough surface and was self-assembled aggregates of nanoparticles
with diameters of about 10 nm. Hence, there might be pores between
these nanoparticles. Such hierarchical structure would have a high
specific surface area, which was of great value in prompting gas mo-
lecules diffusing, and further beneficial to speed up the response of gas
sensor. Fig. 3e–f were the magnified HRTEM image of the as-synthe-
sized porous NiFe2O4 microspheres. The result manifested clear lattice
spacing of 0.251 and 0.295 nm, which agreed well with the (311) and
(220) planes of spinel NiFe2O4. The elemental mapping images of a
single NiFe2O4 microsphere unambiguously showed that Ni, Fe and OFig. 1. XRD pattern of the as-prepared NiFe2O4 sample.
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elements were homogeneously dispersed within the structure
(Fig. 3g–i).

The sensitivity of the gas sensors would be also influenced by the
surface area and porosity of the sensing material. Since there are a large
number of oxygens adsorbed on the surface of particles accumulated
inside the sensing body, which may remain intact or inaccessible to the
reducing gas. Therefore, materials with porous structure will have a
performance improvement in the accessibility of target gas [59–61]. So,
we have to test the specific surface area and the porosity of the as-
prepared NiFe2O4 using the Brunauer-Emmett-Teller (BET) equation.
Test results in Fig. 4a indicated that Nitrogen adsorption and desorption
isotherms did not coincide, resulting in a significant hysteresis loop.
According to definition of the International Union of Pure and Applied
Chemistry (IUPAC), this hysteresis loop belongs to H-Ⅲ of type IV
[62,63], which proved the existence of mesopores materials in the
material. Therefore, the BET results were consistent with the TEM
analysis results. And it had been calculated that the surface area of
NiFe2O4 microspheres was 20.04m2/g and the pore size was mainly
distributed around the average size of 8.9 nm. This high BET and big
pore size of porous NiFe2O4 microspheres would provide an advantage
for accelerating gas transfer on the surface-active sites, which can lead
to an enhancement of the sensing performance.

3.2. Gas sensing properties

The detection function of gas sensor is influenced by various factors,
including working temperature, the disturbance of other gases in the
test environment, long-term response stability and humidity, etc. We
conducted a series of experiments to explore.

The response of semiconductor gas sensor is seriously susceptible by
working temperature due to its direct influence on the surface state of
gas-sensitive materials, as well as the interaction between test gas and

materials. Seen from Fig. 5a, the response of the gas sensors based on
porous NiFe2O4 microspheres to 100 ppm acetone varied with different
operating temperatures ranging from 150 to 325 °C, and exhibited an
“increase-maximum-decay” tendency. And the response reached a
maximum value of 27.4 at 250 °C. The above phenomenon can be il-
lustrated as follows: at low temperature, there were not enough reac-
tion energy for the reaction between acetone molecules and chemically
adsorbed oxygen, resulting in a relatively low response. As tempera-
tures rise, more acetone molecules get enough heat energy to react with
more oxygen, resulting in a better response. However, with the further
increase in temperature, the acetone molecules spread too fast to be
adsorbed on the material surface, leading to a decrease in the utilization
rate of the sensing material, which displays a decrease in gas reaction.
Compared with the above, the sensors based on NiO and Fe2O3, ex-
hibited relatively low response and almost no significant change with
temperature.

Fig. 5b presented the responses of the sensors based on NiFe2O4,
NiO, and Fe2O3 exposed to various test gases, which were investigated
with the same concentration (100 ppm) at a working temperature of
250 °C. As can be seen, the sensors based on NiFe2O4 microspheres
performed a much higher sensitivity in comparison to the other two
sensors. And the responses were 27.4, 14.2, 5.6, 5.3, 8.4, 4.3, 3.4, 1.9,
1.2, 3.74, 4.1 and 2.5 to acetone, ethanol, methanol, formaldehyde,
toluene, methane, H2S, CO, CO2, NH3, C2H2 and C2H4, respectively.
Therefore, it could be clearly seen that the porous NiFe2O4 sensors
exhibited higher response to acetone and relatively lower response to
other gases, displaying good selectivity to acetone against other inter-
fering gases. The high selectivity of acetone may be related to the
catalytic reduction properties of NiFe2O4 [64,65]. Due to NiFe2O4

catalytic reduction function, the reaction of acetone molecules and
surface oxygen adsorption was easier to carry out, resulting in the
material showing a prominent response to acetone.

Fig. 2. XPS analysis of (a) porous NiFe2O4 microspheres; (b) Ni 2p; (c) Fe 2p; (d) O 1s of the as-prepared porous NiFe2O4 microspheres.
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We also tested the responses of the gas sensors based on NiFe2O4

microspheres changed along with the acetone concentrations measured
at its optimum working temperature (presented in Fig. 6). Fig. 6a
showed that the as-fabricated sensors exhibited almost liner gas re-
sponse as acetone concentration increased. It is enough chemisorbed
oxygen and a large specific surface area as XPS and BET measured that
produced this result, which were available to prompt the diffusion of
acetone and provide more opportunities to react causing the increase of
response. Fig. 6b and c depicted the corresponding dynamic response

and recovery curves. Within the range of 10–100 ppm, the response was
increased from 8.3–27.4 linearly, showing that NiFe2O4 could be used
as material for real-time and reliable quantitative analysis. Moreover,
the NiFe2O4 sensors remained stable and orderly in the low con-
centration range (200 ppb-10 ppm), indicating the stability of the ma-
terial. Notably the sensor devices still had a response of 1.3 when the
acetone concentration was as low as 200 ppb, which was lower than the
1.8 ppm level in exhaled gas of a diabetic. On this basis, we made a
comparison (shown in Table 1) about the detection limit of acetone

Fig. 3. (a–b) SEM (c–d) TEM and (e–f) HRTEM images of the as-prepared porous NiFe2O4 microspheres, (g–i) EDS mapping images of an individual porous NiFe2O4

microspheres.

Fig. 4. (a) Typical N2 adsorption-desorption isotherms and the corresponding BET surface area of porous NiFe2O4 microspheres, (b) Pore size distribution curves of
porous NiFe2O4 microspheres.
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sensor based on different semiconductor oxide materials in previous
literature [22,31,32,40,66–72].

Fig. 7a presented the response transients of the sensors based on
NiFe2O4 microspheres to 100 ppm acetone at 250 °C. When the sensors
came into contact with acetone gas, the resistance changed immediately
and then slowly reached a steady value. The response time of this
process was only 2 s. Besides, five response and recovery curve cycles
for 100 ppm acetone were shown in Fig. 7b, exhibiting good repeat-
ability of the sensors. To further verify the long-term stability of the
sensors, continuous measurement for 20 days showed that the re-
sistance of the sensors could be retained well, and the sensors still
displayed a sustained high response to 100 ppm acetone (shown in
Fig. 7c).

We also tested the response of the as-fabricated sensors to 100 ppm
acetone under different relative humidity from 25 to 98%RH. And the
result was summarized in Fig. 8. It was obvious that the response almost
linearly decreased with the rise of relative humidity. That could be
interpreted by the fact that water molecules gradually occupied the
reaction zone of the material surface.

A more detailed comparison was listed in Table 1. Through careful
comparison from Table 1, it was found that there were a lot of sensors
that had higher sensitivity and lower operating temperatures than our
NiFe2O4 sensors. However, most synthesis approaches in these litera-
tures are more complex (such as solvothermal method combined with
an annealing and etch process [22], metal-organic framework route
[67], biotemplate method [71]), and some important sensing properties
for gas sensors such as response time and detection limit would be
impaired, which could be proved based on the comparison in Table 1.
In addition, compared to sensors with similar sensitivity to acetone, the
NiFe2O4 sensors had excellent selectivity, response speed and low de-
tection limit. Accordingly, NiFe2O4 microspheres can be considered as a
relatively excellent and promising material for acetone detection.

Based on the series of experiments, we attempted to explain the gas
sensitivity mechanism of the porous NiFe2O4 sensors: it was found that
high ratio of OC and higher BET surface property might improve the
sensing performance of the gas sensors a great deal. The porous NiFe2O4

microspheres own 24.7% OC as XPS result shown, which would capture
the electrons out from surface conduction band of NiFe2O4 and further
form the negative oxygen adsorption (O2

−, O−) on the surface of the
material, as demonstrated in our support information. As a result, the
resistance of the material increases. When a reducing gas, such as
acetone, reacts with the O− (CH3COCH3 + 8O−

(ads)→3CO2 + 3H2O +
8e−), the bound electrons are released and then move freely between
nanoparticles, whereupon the sensor shows great resistance changes,
which leads to high response. On the other hand, large specific surface
area (20.04 m2/g) provides effective molecular transfer sites, which are
the superiority of boosting the gas access. Furthermore, the pore size of
8.9 nm also provides a convenient channel for gas diffusion, which in-
creases the response to acetone. In addition, the catalytic properties of
NiFe2O4 plays an inestimable role in the sensing mechanism. The re-
duction capacity of the catalyst is acknowledged to be positively cor-
related with the catalytic performance of the catalyst [64]. That means
the catalytic reduction of NiFe2O4 provides assistance in the reduction
of negative oxygen by acetone, which could improve the selectivity and
response speed of the sensor. It is worth noted that due to the strong
connection between catalytic ability and surface performance of the
material, the proper temperature will indeed improve the catalytic
capacity of the material [65]. With this possibility in mind, we tested
the responses of the NiFe2O4 sensors to 100 ppm four gases (ethanol,
methanol, toluene, formaldehyde) at different temperatures to evidence
of selectivity shown in Fig. 9. It could be seen that the sensor had dif-
ferent optimal working temperature when it encountered different
gases, which can be explained by the specific reaction between sensitive
materials and gases. However, even at the optimal operating

Fig. 5. (a) Responses of NiO, Fe2O3 nanoparticles and porous NiFe2O4 micro-
spheres at different working temperature upon exposure to 100 ppm acetone,
(b) Responses of the three sensors to various test gases with a concentration of
100 ppm.

Fig. 6. (a) Response of the sensors based on porous NiFe2O4 microspheres to acetone with different concentrations at 250 °C, (b–c) Corresponding dynamic response
curves of the sensors to different concentrations of acetone.
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temperature of other gases, the corresponding responses were much
lower than that of acetone. Therefore, it is extremely beneficial to select
an optimal operating temperature to maximize the selectivity and re-
sponse of the sensor to the target gas.

4. Conclusion

In this work, template-free solvent thermal synthesis combined with
subsequent annealing were employed as a simple assembly line synth-
esis method for the preparation of superfine porous NiFe2O4 micro-
spheres. The NiFe2O4 microspheres were assembled from a number of
nanoparticles with uniform size (average diameter of 150 nm), and had
visible pores and specific surface area of 8.9 nm and 20.04 m2/g re-
spectively, which effectively increased the diffusion coefficient of the

sensing microspheres. The porous NiFe2O4 sensors displayed good se-
lectivity to acetone against other interfering gases, high response value
(27.4), super-fast detection (response time within 2 s), and considerable
stability to 100 ppm acetone at the optimum working temperature of
250 °C. What stood out was that the detection limit of the sensor was
200 ppb, which successfully met the detection needs of diabetes pa-
tients. In conclusion, this study provided a simple way to synthesize
porous NiFe2O4 microspheres, which would deserve to hold a promising
application prospect in the fabrication of high-performance acetone gas
sensors for real-time health inspection.
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