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A Wideband Bandpass Power Divider With
Out-of-Band Multi-Transmission Zeros and

Controllable Equal-Ripple Levels
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Abstract— In this article, a novel wideband bandpass power
divider (PD) with out-of-band multi-transmission zeros (TZs) is
presented. It consists of 2M shunted short-circuited stubs (SCSs),
(M + N) cascaded coupled line sections, and (M + N − KN)
isolation resistors. There are two types of topologies, and the
number of TZs is solely determined by N. Through even- and
odd-mode analyses, general simultaneous equations for charac-
teristic impedances, coupling strengths, and isolation resistors are
derived with the proposed algorithm. By suitably selecting all the
design parameters, all the S-parameters (S11, S21 = S31, S22 = S33,
and S32) of the proposed topology could provide an equal-ripple
response with controllable ripple level in the passband. For a
given fractional bandwidth (FBW), TZs and out-of-band rejection
level can be designed independently. For further optimization,
several isolation resistors can be omitted with the unchanged
performances. For verification, two experimental circuits are
fabricated and measured. Good agreement between the measured
and simulated results is attained so as to successfully validate the
correctness of the proposed design approach.

Index Terms— Bandpass, equal-ripple, multi-transmission zero
(TZ), power divider (PD), wideband.

I. INTRODUCTION

POWER divider (PD) is a crucial microwave component
and widely used in various wireless communication sys-

tems. Wilkinson PD (WPD) [1] is the most popular topology
among various reported PDs, because it can not only split the
power into two output ports but also achieve excellent port-to-
port isolation performance and perfect impedance matching at
all the ports at center frequency.

In RF front-end module, WPDs are usually cascaded with
bandpass filters (BPFs) to cut off undesired signals. However,
these discrete components need a large occupied area on
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the limited RF front-end circuit. By merging the WPD and
BPF into single component, circuit size and transmission
loss can be much smaller. Recently, filtering PDs become
highlighted, and a variety of filtering PDs have been developed
with different operation bandwidths. For bandpass PDs, there
are two mainly filtering analysis approaches: classical admit-
tance inverter approach [2]–[8] and coupling matrix network
synthesis approach [9]–[15]. Other approaches may also be
applied for PD design, for example, non-resonating nodes’
approach [16].

To improve the operating bandwidth, a variety of
wideband/ultra-wideband (UWB) bandpass (BP) PDs have
been developed with different techniques. These techniques
can be classified as microstrip-to-slotline technique [17]–[20],
transversal signal-interference technique [21], ring resonator
technique [22], coupled-line section (CLS), open-/short-
circuited stub technique [23]–[31], and so on. Multi-way PDs
with wideband filtering function [32]–[36] have also been
reported, recently. Because multi-layer structure needs extra
fabrication cost, microstrip-to-slotline technique is not highly
preferred in industrial application. Additional transmission
zeros (TZs) can be created outside the desired passband by
transversal signal interference technique [21] and ring res-
onator technique [22], respectively. However, these ring-type
topologies have to occupy a large circuit area.

Although equal-ripple response of S11 has been realized
in different types of wideband topologies by using CLS and
open-/short-circuited stubs (SCSs) [24], [29]–[31], the tasks
in increasing the number of TZs with equal-ripple performance
and suppressing out-of-band rejection level are still two big
challenges. On the other hand, in-band reflection and isolation
performances are two key design requirements in practice.
In [30], a two-way PD is added to enhance the isolation
performance and roughly maintain the operating bandwidth.
However, the reflection performance (S22) is not as good
as isolation performance (S32). By inserting multi-isolation
resistors [29], [31], the numbers of reflection zeros (RZs)
(RZs, where S22 = S33 = 0) at output ports and isolation
zeros (IZs, where S32 = 0) between output ports are increased
accordingly. But such kind of topologies cannot provide
extra TZs. To sum up, no wideband BP PD topology has
been developed so far to achieve the following performances:
1) designable multi-TZs and multi-RZs, controllable out-of-
band rejection level, and wideband equal-ripple response of
S11 and 2) controllable equal-ripple levels of reflection (S22)
and isolation (S32) in the passband.
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In this article, a class of wideband BP PD is newly intro-
duced. It consists of 2M shunted SCSs and (M + N) cascaded
CLSs, where M ≥ 2 and N ≥ 2. For even and odd numbers
of N , there are two types of topologies, where the numbers of
TZs (S21 = 0) and RZs (S11 = 0) are only determined by N
and M , respectively. Through even- and odd-mode analyses,
general simultaneous equations for characteristic impedances,
coupling strengths, and isolation resistors are newly derived
with the proposed algorithm. By suitably selecting all the
design parameters, all the S-parameters (S11, S21 = S31,
S22 = S33, and S32) of the proposed topology could provide
controllable equal-ripple responses in the passband. Mean-
while, for a given fractional bandwidth (FBW), TZs and
out-of-band rejection level can be designed independently. For
further optimization, several isolation resistors can be omitted
with the same performances to be maintained.

Compared with other reported works [17]–[36], the pro-
posed topology could offer the following three unique features
by virtue of the algorithm: 1) multi-TZs, multi-RZs, and out-
of-band rejection level can be designed independently while
maintaining equal-ripple response of S11; 2) the numbers
and frequencies of output port RZs (S22 = S33 = 0)/IZs
(S32 = 0) can exactly match with those of input port RZs
(S11 = 0), and both reflection and isolation ripple levels can be
adjusted in the desired ranges in the passband; and 3) a unified
design guideline with the proposed algorithm and optimization
approach for isolation resistors are newly summarized and
proved in this work.

II. DESIGN EQUATIONS OF PROPOSED WIDEBAND BP PD

The topology of the proposed wideband BP PD is shown
in Fig. 1. It consists of 2M shunted SCSs and (M + N)
cascaded CLSs, where M ≥ 2 and N ≥ 2. When N
is an even integer, there are (M + N) isolation resistors
(R1, R2, . . . , RM+N ); when N is an odd integer, there are
(M + N − 1) isolation resistors (R1, R2, . . . , RM+N−1), where
the position of the (M + N)th isolation resistor is replaced by
via-hole so as to be connected with the ground. Zei and Zoi are
the even- and odd-mode characteristic impedances of the i th
CLS (where i = 1, 2, . . . , M + N). Zsj is the characteristic
impedance of the j th SCS (where j = 1, 2, . . . , M). The
electrical lengths of each CLS and SCS are set as θ . Three
terminal load impedances are normalized to 1 �.

A. Even-Mode Analysis

Fig. 2(a) shows the even-mode equivalent bisection circuit
of the proposed wideband BP PD. The input admittance Ysine

can be calculated as

Ysine = jgs sin θ

∑(N+K N )/2−1
0 gup

i cos2i+1 θ∑(N+K N )/2
0 gdown

i cos2i θ
(1)

where KN = mod(N , 2), and gup
i and gdown

i are the polynomial
functions with the degrees (2i + 1) and 2i , respectively. gs ,
gup

i , and gdown
i are only determined by the even-mode charac-

teristic impedances of N cascaded CLSs (ZeM+1, . . . , ZeM+N ).
The entire ABCD matrix of the even-mode equivalent

bisection circuit in Fig. 2(a) can be derived by multiplying

Fig. 1. Topology of the proposed wideband BP PD.

Fig. 2. Formulation of the even- and odd-mode equivalent bisection circuits
for the proposed wideband BP PD. (a) Even-mode. (b) Odd-mode.

the ABCD matrices of cascaded sections, such that[
Ae Be

Ce De

]
=

[
1 0

1/( j Zs1 tan θ) 1

][
cos θ j Ze1 sin θ

j sin θ/Ze1 cos θ

]

×
[

1 0
1/( j Zs2 tan θ) 1

]
· · ·

[
1 0

1/( j Zs M tan θ) 1

]

×
[

cos θ j ZeM sin θ
j sin θ/ZeM cos θ

][
1 0

Ysine 1

]
. (2)

After complicated arithmetical operation, in (2) can be
simplified as

Ae =
(M−K M )/2∑

0

aei cos2i+K M θ − gs

(M+K M )/2∑
0

bei cos2i+1−K M θ

×
∑(N+K )/2−1

0 gup
i cos2i+1 θ∑(N+K )/2

0 gdown
i cos2i θ

(3a)

Be = j

sin θ

(M+K M )/2∑
0

bei cos2i+1−KM θ (3b)

Ce = j

sin θ

(M+K M )/2∑
0

cei cos2i+1−KM θ + jgs sin θ

(M−K M )/2∑
0

dei

× cos2i+K M θ

∑(N+K )/2−1
0 gup

i cos2i+1 θ∑(N+K )/2
0 gdown

i cos2i θ
(3c)

De =
(M−K M )/2∑

0

dei cos2i+K M θ (3d)
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where KM = mod(M , 2), aei and dei are the polynomial
functions with the degree (2i + KM ), and bei and cei are the
polynomial functions with the degree (2i + 1 − KM ).

aei, bei, cei, and dei are only determined by the
even-mode characteristic impedances of M cascaded CLSs
(Ze1, . . . , ZeM) and the characteristic impedances of M
shunted SCSs (Zs1, . . . , Zs M). The input impedance Z ine and
reflection coefficient �e looking into port 2 can be derived as

Z ine = (2De + Be)/(2Ce + Ae) and

�e = (Z ine − 1)/(Z ine + 1). (4)

Then, S11, S21, and S31 can be summarized as

S11 = �e and S21 = S31 = 2
√

2/(Ae + Be + 2Ce + 2De).

(5)

B. Odd-Mode Analysis

Similarly, Fig. 2(b) shows the odd-mode equivalent bisec-
tion circuit of the proposed wideband BP PD. The input
admittance Ysino can be calculated by

Ysino =
∑N

0 hup_Re
i cos2i θ + j sin θ

∑N−1
0 hup_Im

i cos2i+1 θ∑N
0 hdown

i cos2i θ

(6)

where hup_Re
i , hdown

i , and hup_Im
i are the polynomial functions

with the degrees 2i and (2i + 1), respectively. hup_Re
i , hdown

i ,

and hup_Im
i are only determined by the odd-mode characteristic

impedances of N cascaded CLSs (ZoM+1, . . . , ZoM+N ) and
isolation resistors (R1, R2, . . . , RM+N ).

The ABCD matrices of the odd-mode equivalent bisection
circuit in Fig. 2(b) can be expressed as (7), shown at the
bottom of the page.

After complicated arithmetical operation, (8) as shown at
the bottom of the page, can be simplified, where aRe

oi , aIm
oi ,

bRe
oi , bIm

oi , cRe
oi , cIm

oi , dRe
oi , and d Im

oi are the polynomial functions
with the degree (2i + KM ).

Similarly, aRe
oi , aIm

oi , bRe
oi , bIm

oi , cRe
oi , cIm

oi , dRe
oi , and d Im

oi are only
determined by the odd-mode characteristic impedances of M
cascaded CLSs (Zo1, . . . , ZoM), the characteristic impedances
of M shunted SCSs (Zs1, . . . , Zs M ), and isolation resistors
(R1, . . . , RM ). Then, the input impedance Z ino and reflection
coefficient �o looking into port 2 can be derived as

Z ino = Bo/Ao and �o = (Z ino − 1)/(Z ino + 1). (9)

Then, S22, S33, and S32 can in general be deduced as

S22 = S33 = (�e + �o)/2 and S32 = (�e − �o)/2. (10)

III. DESIGN APPROACH OF PROPOSED WIDEBAND BP PD

A. General Response of Proposed Wideband BP PD

A schematic of general S-parameters is shown in Fig. 3.
In this work, the proposed wideband BP PD could not only

[
Ao Bo

Co Do

]

=
[

1 0
1/ j(Zo1 + Zs2) tan θ + 2/R1 1

]
· · ·

[
1 0

1/ j Zs M tan θ + 2/RM−1 1

]

×
[

cos θ j ZoM sin θ
j sin θ/ZoM 1

][
1 0

2/RM+1 1

][
1 0

Ysino 1

]
(7)

Ao =
(M+K M )/2−1∑

0

aRe
oi cos2i−K M+1 θ +

(M+K M )/2−1∑
0

bRe
oi cos2i−K M +1 θ

∑N
0 hup_Re

i cos2i θ∑N
0 hdown

i cos2i θ
−

(M−K M )/2∑
0

bIm
oi cos2i+K M θ

×
∑N−1

0 hup_Im
i cos2i+1 θ∑N

0 hdown
i cos2i θ

+ j

(
1

sin θ

(M−K M )/2∑
0

aIm
oi cos2i+K M θ+

(M+K M )/2−1∑
0

bRe
oi cos2i−K M +1 θ

sin θ
∑N−1

0 hup_Im
i cos2i+1 θ∑N

0 hdown
i cos2i θ

+ 1

sin θ

(M−K M )/2∑
0

bIm
oi cos2i+K M θ

∑N
0 hup_Re

i cos2i θ∑N
0 hdown

i cos2i θ

)
(8a)

Bo =
(M+K M )/2−1∑

0

bRe
oi cos2i−K M+1 θ + j

sin θ

(M−K M )/2∑
0

bIm
oi cos2i+K M θ (8b)

Co =
(M+K M )/2−1∑

0

cRe
oi cos2i−K M +1 θ +

(M+K M )/2−1∑
0

dRe
oi cos2i−K M +1 θ

∑N
0 hup_Re

i cos2i θ∑N
0 hdown

i cos2i θ
−

(M−K M )/2∑
0

d Im
oi cos2i+K M θ

×
∑N−1

0 hup_Im
i cos2i+1 θ∑N

0 hdown
i cos2i θ

+ j

(
1

sin θ

(M−K M )/2∑
0

cIm
oi cos2i+K M θ+

(M+K M )/2−1∑
0

dRe
oi cos2i−K M +1 θ

sin θ
∑N−1

0 hup_Im
i cos2i+1 θ∑N

0 hdown
i cos2i θ

+ 1

sin θ

(M−K M )/2∑
0

d Im
oi cos2i+K M θ

∑N
0 hup_Re

i cos2i θ∑N
0 hdown

i cos2i θ

)
(8c)

Do =
(M+K M )/2−1∑

0

dRe
oi cos2i−K M +1 θ + j

sin θ

(M−K M )/2∑
0

d Im
oi cos2i+K M θ (8d)

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on January 08,2023 at 16:46:54 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: WIDEBAND BANDPASS PD 1181

Fig. 3. Schematic of general S-parameters corresponding to the proposed
wideband BP PD in Fig. 1.

provide equal-ripple responses of S11, S32, and S22 (S33)
in the passband but also maintain multi-TZs of S21 in the
stopband and multi-RZs in the passband. As such, in-band
reflection/isolation levels and out-of-band rejection level can
be controlled independently.

1) Even-Mode Calculation: Fig. 3 shows the S-parameters
in a single period, where there are (M + 1) RZs of S11 in the
passband and (N − KN ) TZs of S21 in the stopband.

To realize wideband equal-ripple response of S11, the fol-
lowing equations should be maintained:

S11|θ=θ
S11
Z1

= S11|θ=θ
S11
Z2

= · · · = S11|θ=θ
S11
Z (M+1)

= 0 (11a)

∂S11

∂θ

∣∣∣∣
θ=θ

S11
D1

= ∂S11

∂θ

∣∣∣∣
θ=θ

S11
D2

= · · · = ∂S11

∂θ

∣∣∣∣
θ=θ

S11
DM

= 0

(11b)

−20 log10 |S11| = RLS11 @ θ S11
D1 , θ S11

D2 , . . . , θ S11
DM (11c)

−20 log10 |S11| = RLS11 @ θ S11
c (11d)

where θ S11
c is defined as the electrical length at the lower cutoff

frequency; RLS11 is the return loss of S11 at θ S11
D1 , θ S11

D2 , . . . , and
θ S11

DM , and RLS11 can be selected arbitrarily.
Considering TZs of S21 in the stopband under S21 = 0,

we have 1/Ysine = 0 in (1). The number of TZs of S21 is only
determined by the number of CLSs N . When N is an even
integer, there are N TZs; when N is an odd integer, there are
(N − 1) TZs. Generally, there are (N − KN ) TZs of S21 in the
stopband. To realize the controllable TZs of S21, the following
equations should be maintained:

S21|θ=θ
S21
Z1

= S21|θ=θ
S21
Z2

= · · · = S21|θ=θ
S21
Z(N−K N )

= 0 (12a)

∂S21

∂θ
= 0 @ θ S21

D(N−KN )/2 (12b)

−20 log10 |S21| = RLS21 @ θ S21
D(N−KN )/2 (12c)

where RLS21 is the return loss of S21 at θ S21
D(N−KN )/2, and RLS21

can be selected arbitrarily.
To sum up, in the even-mode calculation, there are

(M + 3 + N/2 − KN /2) design equations and (2M + N)
variable parameters in (11) and (12), where all the vari-
able parameters are Zei (i = 1, 2, 3, . . . , M + N) and
Zsj ( j = 1, 2, 3, . . . , M).

2) Odd-Mode Calculation: As can be seen from Fig. 3,
there are M equal ripples of S22 (S33) and S32 in the passband.
It is worth mentioning that �e and �o are determined in even-
and odd-mode calculation, respectively. Based on (10), if S32

is determined, S22 (S33) can be fixed accordingly, and vice
versa. Therefore, only S32 or S22 (S33) needs to be determined
in odd-mode calculation.

To determine the equal-ripple response of S32, the following
equations should be maintained:

∂S32

∂θ

∣∣∣∣
θ=θ

S11
D1

= ∂S32

∂θ

∣∣∣∣
θ=θ

S11
D2

= · · · = ∂S32

∂θ

∣∣∣∣
θ=θ

S11
DM

= 0 (13a)

−20 log10 |S32| = RLS32 @ θ S11
D1 , θ S11

D2 , . . . , θ S11
DM (13b)

where RLS32 is the return loss of S32 at θ S11
D1 , θ S11

D2 , . . . , and θ S11
DM .

Similarly, the following equations are needed for equal-
ripple response of S22

∂S22

∂θ

∣∣∣∣
θ=θ

S11
D1

= ∂S22

∂θ

∣∣∣∣
θ=θ

S11
D2

= · · · = ∂S22

∂θ

∣∣∣∣
θ=θ

S11
DM

= 0 (14a)

−20 log10 |S22| = RLS22 @ θ S11
D1 , θ S11

D2 , . . . , θ S11
DM (14b)

where RLS22 is the return loss of S22 at θ S11
D1 , θ S11

D2 , . . . , and θ S11
DM .

To sum up, in the odd-mode calculation, there are
(M + KM) design equations and (2M + 2N − KN ) variable
parameters in (13), where all the variable parameters can be
divided into two parts: the odd-mode characteristic impedances
Zoi (i = 1, 2, 3, . . . , M + N) and isolation resistors R1,
R2, . . . , RM+N−KN .

B. Proposed Algorithm

To describe the design approach of proposed wideband BP
PD clearly, its detailed algorithm is summarized as a flowchart
in Fig. 4. In the following, a few critical design steps are
further described.

Step 1: Prescribe the bandwidth θ S11
c , return losses of S11

and S32 (or S22) in the passband: RLS11 and RLS32

(RLS22), out-of-band rejection level of S21 in the
stopband: RLS21 , TZs of S21; θ S21

Z1 , θ S21
Z2 , . . . , and

θ S21
Z(N−K N ).

Step 2: Based on the above-prescribed specifications,
choose suitable section numbers M and N , and then
determine the numbers of simultaneous equations
and variable parameters of the proposed topology.

Step 3: In even-mode calculation, as M and N are deter-
mined, there are (M + 3 + N/2 − KN /2) simulta-
neous equations and (2M + N) variable parameters.
Because (2M + N) ≥ (M + 3 + N/2 − KN /2) is
valid under the condition of M ≥ 2 and N ≥
2, all the characteristic impedances (Zei and Zsj)
can be calculated from (11) to (12) by properly
selecting variable parameters. If any characteristic
impedances cannot be realized, go back to Step 2,
and choose different values of M and N .

Step 4: Similar to Step 3, there are (M + KM) simultaneous
equations and (2M +2N − KN ) variable parameters
in odd-mode calculation. Because the number of
variable parameters is larger than the number of
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Fig. 4. Design flowchart for the proposed wideband BP PD.

simultaneous equations, (M + 2N − KM − KN )
variable parameters can be selected arbitrarily to
derive a group of unique solutions. Based on the
equal-ripple condition of S32 (or S22) in (13) [or
(14)], all the characteristic impedances (Zoi) and
isolation resistors (R1, R2, . . . , RM+N−KN ) can be
calculated by editing and running the MATLAB
program. If any odd-mode characteristic impedances
cannot be realized, go back to Step 2 and choose
different values of M and N .

Fig. 5. Proposed wideband BP PD with M = 3 and N = 2.

Fig. 6. Circuit simulation results based on Table I for the proposed wideband
BP PD (Example A).

Fig. 7. Optimized wideband BP PD topology with M = 3 and N = 2.

Step 5: Perform EM simulation and further slightly adjust
the physical dimensions toward optimized target if
necessary.

IV. DESIGN EXAMPLES WITH OPTIMIZATION

For the proposed topology in Fig. 1, using the flowchart in
Fig. 4, the general response in Fig. 3 will be evidently vali-
dated in this section. Several design charts, design examples,
and circuit simulation results are given for discussion.

A. M = 3 and N = 2 (Standard and Optimized Topology)

Fig. 5 shows the proposed wideband BP PD with M = 3
and N = 2. By substituting M = 3 and N = 2 into (3) and (8),
the ABCD matrices can be obtained directly. Because detailed
equations are very complicated and lengthy, they are omitted
in this article.

Based on (12a), the electrical length of TZ can be calculated

θT Z1 = arccos
√

Ze4/(Ze4 + Ze5) = arccos
√

1/1 + ks (15)

where ks = Ze5/Ze4.
Based on the flowchart in Fig. 4, one design example

(Example A) is demonstrated and realized under the conditions
of: θ S11

c = 66.00◦ at f0 = 3 GHz, RLS11 = 20 dB, and
RLS32 = 30 dB in the passband and RLS21 = 20 dB in the
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Fig. 8. Circuit simulation results for the optimized wideband BP PDs.
(a) Example B. (b) Example C. (c) Example D.

Fig. 9. Frequency versus power consumption of resistors for four wideband
BP PDs.

stopband, θ S21
Z1 = 50.70◦. In even-mode calculation, there are

seven simultaneous equations (M + 3 + N /2 − KN /2 = 7,
where KN = 0) and eight variable parameters (Ze1, Ze2, Ze3,
Ze4, Ze5, Zs1, Zs2, and Zs3). When Zs2 = 3.0000 � is given,

Fig. 10. Proposed wideband BP PD with M = 2 and N = 4. (a) Standard
topology. (b) Optimized topology.

Fig. 11. Circuit simulation results for the optimized wideband BP PD
(Example E).

TABLE I

STANDARD TOPOLOGY WITH M = 3 AND N = 2 (EXAMPLE A)

a group of unique solutions can thus be derived from (11)
and (12). In odd-mode calculation, there are four simultaneous
equations (M + KM = 4, where KM = 1) and ten variable
parameters (Zo1, Zo2, Zo3, Zo4, Zo5, R1, R2, R3, R4, and R5).
When the coupling strengths of the all CLSs and the resistance
of R5 are determined, a group of unique solutions can be
derived from (13). All the calculated parameters are tabulated
in Table I. The circuit simulation results are depicted in Fig. 6.

Through carefully analyzing the isolation resistors R3 =
76.2680 � and R5 = 0.1000 � in Example A, R3 → ∞
and R5 = 0 can be selected for circuit optimization. Then,
the optimized topology is derived as shown in Fig. 7, where
two isolation resistors (R3 and R5) are omitted.

Three design examples (Example B–D) are studied under
the condition of: θ S11

c = 66.00◦ at f0 = 3 GHz,
RLS11 = 20 dB, and RLS32 = 30 dB in the passband and
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TABLE II

OPTIMIZED TOPOLOGY WITH M = 3 AND N = 2 (EXAMPLE B)

TABLE III

OPTIMIZED TOPOLOGY WITH M = 3 AND N = 2 (EXAMPLE C)

TABLE IV

OPTIMIZED TOPOLOGY WITH M = 3 AND N = 2 (EXAMPLE D)

RLS21 = 20 dB in the stopband. Different TZs of S21 need
to be selected in these three examples, where θ S21

Z1 = 45.00◦ in
Example B, θ S21

Z1 = 50.70◦ in Example C, and θ S21
Z1 = 54.60◦

in Example D.
In even-mode calculation, under the only degree of freedom

in Zs2 = 3.0000 �, a group of unique solutions can be
derived from (11) and (12). In odd-mode calculation, there
are 6 degrees of freedom. Because R3 → ∞ and R5 = 0 �
are known, the left 4 degrees of freedom are consumed by
Zo2–Zo5. Then, a group of unique solutions can be derived
from (13). For three design examples, the detailed calculation
parameters are tabulated in Tables II–IV, respectively. Their
circuit simulation results are depicted in Fig. 8(a)–(c).

The power consumption of the resistors is also considered
here, and its values are calculated as depicted in Fig. 9
from |S12|2 + |S22|2 + |S32|2 + |SR |2 = 1. Under the same
TZs, the power consumption of resistors between Exam-
ple A and C is almost the same. Comparing three examples
(Example B–D), sharp roll-off rate can be enhanced as the TZs
are shifted to the center frequency; meanwhile, the bandwidth
of power consumption becomes wider.

B. M = 2 and N = 4 (Standard and Optimized Topology)

Similarly, the proposed topology can also be designed with
different values of M and N . Fig. 10 shows the standard
topology and its optimized case with M = 2 and N = 4.
Compared with standard topology, R2 → ∞ and R4 = 0 �
are preferred for optimization. Naturally, R5 = R6 = 0, then
the fifth and sixth CLSs are two cascaded transmission lines.

Fig. 12. Experimental circuit of the proposed wideband BP PD (Example C).
(a) Layout and photograph of the circuit. (b) Circuit simulation, EM simula-
tion, and measured results.

TABLE V

OPTIMIZED TOPOLOGY WITH M = 2 AND N = 4 (EXAMPLE E)

Instead of the detailed design equations and discussions,
only optimized topology (Example E) is given herein as an
example.

The design parameters of Example E under the condition
of: θ S11

c = 78.40◦ at f0 = 3 GHz, RLS11 = 20 dB, and RLS22 =
25 dB in the passband and RLS21 = 20 dB in the stopband,
θ S21

Z1 = 20.76◦ and θ S21
Z2 = 61.80◦. The detailed calculation

parameters are tabulated in Table V, and the circuit simulation
results are shown in Fig. 11.
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TABLE VI

COMPARISON OF SEVERAL RECENT WIDEBAND BP PDS [17]–[36]

V. EXPERIMENTS AND DISCUSSION

In the experiment, two prototype circuits (Examples C and
E) are selected for fabrication on Rogers RT/5880 substrate.
For the first experimental circuit, Fig. 12(a) shows the layout
and photograph of Example C. The detailed design parameters
are listed in Table III, where the resistances of resistors are
R1 = 619 �, R2 = 75 �, and R4 = 280 �. Fig. 12(b) shows
the results from circuit simulation, EM simulation (Sonnet),
and measurements. Similarly, the layout circuit, photograph,
simulated, and measured results of the second experimental
circuit (Example E) are shown in Fig. 13(a) and (b), respec-
tively, where the resistances of resistors are R1 = 75 � and
R3 = 82 �.

The even- and odd-modes propagating along the CLSs have
different phase velocities in microstrip line structure, where
vev �= vod. When the coupling between these two modes
is very weak, the maximum coupling strengths in the first
and second experimental circuits are −11.11 and −19.86 dB,
respectively. vev ≈ vod can be assumed in two experimental
circuits. Furthermore, parasitic effect around via-holes and
multi-transmission line junctions will affect the concerned
performances, especially at high frequencies. Therefore, for
both the sets of experiments, the simulated and measured
results are matched very well until 4.5 GHz.

Finally, a comparison among several other reported
works [17]–[36] is listed in Table VI. From Table VI,
the following improvements can be achieved as
summarized.

1) By selecting different M and N , the number of RZs and
TZs can be designed arbitrarily. In the experiment, four
RZs and two TZs are realized in the first experimental
circuit; three RZs and four TZs are realized in the second
experimental circuit.

2) Equal-ripple responses of S11, S22, S33, and S32 can be
maintained, and their ripple levels can also be designed
at the same time.

Fig. 13. Experimental circuit of the proposed wideband BP PD (Example E).
(a) Layout and photograph of the circuit. (b) Circuit simulation, EM simula-
tion, and measured results.

3) Furthermore, even though the bandwidth is determined,
TZs and out-of-band rejection level can be designed
independently.
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VI. CONCLUSION

In this article, a novel class of wideband bandpass PDs
with out-of-band multi-TZs have been presented and designed.
A set of general simultaneous equations for characteristic
impedances, coupling strengths, and isolation resistors have
been systematically summarized through even- and odd-mode
analyses. Based on the proposed algorithm, a group of
unique solutions could be derived, and controllable equal-
ripple responses of S11, S21 (S31), S22 (S33), and S32 could be
realized in the passband. The out-of-band rejection level and
TZs could be designed independently. For further optimization,
several isolation resistors have been omitted under the same
performance. For verification, two experimental circuits have
been fabricated, and the measured frequency responses have
verified well the proposed design theory.
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